Homework for Elliptic Curves

Nicolas Keng
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1 Example Sheet 1

Exercise 1.1 Alter building Vadic priests in India knew by about 800BC how to construct
rational right-angled trianges with areas 6,15,21 and 210. Repeat their discovery.

Proof. Note that a® + b? = ¢? corresponds to the Pythagorean array:

a=m?—-n% b=2mn, c=m?+n’

1. Take m = 2, n = 1, the triangle has sides (3, 4, 5), and the area is 6;
15 17

2. Take m = 4, n = 1 and then reduce the area by half, the triangle has sides (4, 27 2), and the
areais 15;

3. Take m = 4, n = 3 and then reduce the area by half, the triangle has sides <; 12, 225), and the
area is 21;

4. Take m = 5, n = 2, the side length of the triangle is (20, 21, 29), and the area is 210.

O]

Exercise 1.2 Find rational parametrisations for the plane conic 22 + zy + 3y? = 1 and for the

singular plane cubic y? = 2%(z + 1).

Proof. For 22 + xy + 3y? = 1, (—1,0) is a solution. Substitute y = k(x + 1) into 22 + zy + 3y> = 1,
we have
(3k% 4+ k + 1)z? + (6k* + k)z + (3k* — 1) = 0,
3k% — k(k+2)
TR R G Vo T
For 32 = 2%(z + 1), (0,0) is a singularity. Reshaping the original equation yields (%)2 =z+ 1

by Vieta’s Theorem we know =z = thus

Taking = 2, we obtain t2 = z+1, 2 = 2 — 1. Substituting y = z, we know y = t(t2 —1). Therefore,
T

the rational parametrization of the curve is

r=t>—1, y=t{t>-1).
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Exercise 1.3 Consider the curve Cy = {U? + V¢ = W4} C P? defined over Q.
(i) Find the points of inflection on C3, and then put this curve in Weierstrass form.
(i) Let x,y € Q(C4) be given by x = W?/U? and y = V2W /U3. Show that > = 2° — =z,

and hence find all the QQ-rational points on C}.

Proof. (i) The inflection point makes the quadratic partial derivative of F(U,V,W) = U3 + V3 — W3
be zero. Calculation yields Fyyy = 6U, Fyy = 6V, Fyyw = —6W. Thus, the inflection point should
make UVW = 0.

1. If U = 0, then V3 = W3 = V = (W, with inflection points at (0 : 1 : 1), (0 : (3 : 1),
(0:¢3:1);

2. If V = 0, then U3 = W3 = U = (3W, with inflection points at (1 : 0 : 1), ({3 : 0 : 1),
(GG:0:1);

3. IfW =0, then V3 + U? = 0 — U = —(3V, with inflection points at (1:=1:0),(1:—¢3:0),
and (1 : —C§ :0).

12W - 36(U — V)

By transformi = =
y transforming x U—i—V’y T

, the curve becomes the standard Weierstrass form
y? =z — 432.

(ii) We use the infinite descent method to demonstrate that 24 + y* = (22)2 + (y?)? = 22 has no
positive integer solutions. If not, we assume that (z, y, z) is the z smallest positive integer solution. This
demonstrates that Cy has positive integer solutions only when z is odd, and = and y are both odd and

even. Let’s assume x is even, y and z are odd. Using the Pythagorean construction, we have:

z? = 2mn, y2 :m2—n2, z=m?+n?
Note that n? + y> = m?, which makes (n,y,m) form a new set of Pythagorean ratios. Verifying by

mod4, we know that n is even and m is odd. Again using the Pythagorean construction, we have:
n=2pq, y=p’—q¢*, m=p’+q".

Note that m and n coprime, and p and ¢ coprime. Therefore, we have p, g, and m = p? + ¢° coprime.

Substituting into the equation, we obtain 22 = 4pq(p* + ¢*), which means that p, ¢, and m are all
squares, i.e.p = 12, ¢ = 82, m = t.

Substituting into m = p? + ¢, we find that 7* 4 s* = 2, and (r, s, t) also forms a set of positive
integer solutions to the original equation. However, it is clear that ¢ < z, which contradicts the assumption
that (z,y, z) is the z smallest positive integer solution. This also shows that C4 has no positive integer
solutions. The only rational points for y? = 23 — x are (0, 0), (+1,0), and O. Therefore, all the rational
points on Cy are

(1:0:£1), (0:1:41).
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Exercise 1.4 Let K be an algebraically closed field with char(K') # 2. Let C be the projective
closure of the affine curve with equation y> = f(z), where f(z) € K[z]. Show that if
deg(f) = 3 then C is smooth if and only if f has distinct roots.

[Hint: It’s probably simplest to work with the affine equation, and then check the point
at infinity separately.] What happens if deg(f) > 3?

Proof. We set F'(z,y) = y*> — f(x), and the affine curve is F(z,y) = 0. The partial derivatives are
F, = —f'(z), Fy = 2y. Solution

F(z,y) =0, Fy(z,y)=0, Fylz,y)=0

We obtainy = 0, f(z) = 0, f’(x) = 0. Thus, the singularity occurs at the point (z,0) where f(z) =0
and f’(x) = 0, meaning that f(z) has multiple roots. Conversely, if f(z) has three distinct roots, then
for any root x, f'(x) # 0, so the affine curve is smooth.

X Y
Now we can check the infinity point. Letz = ZY=72 note that deg f = 3, then homogenization

(;)2 —f <)Z(> = %Q(X, Z),

where g(X, Z) is a homogeneous cubic polynomial. Thus, the projection curve is:

yields

F(X,Y,Z)=2Y?—g(X,Z) = 0.

The point at infinity corresponds to Z = 0. Substituting this into 0 = g(X,0) = a X3, we solve for the
point at infinity as (0 : 1 : 0). Computing the partial derivatives,

Fx =—gx(X,2), Fy =2YZ, Fz =Y? — g7(X, 2),

Atthe point (0:1:0), Fx =0, Fy =0, Fz = 1 # 0, the gradient is non-zero, so the point is smooth.
If deg(f) = d > 3, the homogenized equation becomes

Y27472 = ¢(X, 2)

where g(X, Z) is a homogeneous polynomial of degree d. In this case, the point at infinity may be a

singular point. O

Exercise 1.5 Let E be the elliptic curve over Q defined by y> + y = 2> — z. Draw a graph
of its real points. Let P = (0,0). Compute nP for n =2,3,4,5,6,7,8. What do you notice

about the denominators? Can you prove anything in this direction?

. 1
Proof. We can draw the draph as follows. Note that the curve is symmetric about y = — 3 and that the

point (0, 0) lies on the curve. Given a point P = (0, 0), we differentiate the elliptic curve equation about

: x
x to obtain 3/ = 5

2P = (1,0).

T. Therefore, the tangent line at P is y = —x, which intersects F at (1,—1), and
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2 /
1
\2 é A

For Q = (w0, o), calculate P + @, the slope k = @, and P + Q = (k? — o, 20k — k3 — 1).
Zo

Substituting n P into the equations, we calculate

w

2P = (1,0), 3P = (—1,—1), 4P = (2,—3), 6P = (6, 14),

1 5 5 8 21 69
P=(- -2 P=(-2 =2 pP=(2= ).
g <4’ 8)’7 < 9’27)’8 <25’ 125)

the denominator of 2P, 3P, 4P, 6 P are all integers;
the denominator of 5P is both powers of 2;

the denominator of 7P is both powers of 3;

Ll

the denominator of 8P is both powers of 5.

This actually reflects the following fact: Taking the modulo p reduction of the elliptic curve, the
order of E(IF,) annihilates P: modulo 2, the order is 5; modulo 3, the order is 7; and modulo 5, the order
is 8. Since n is now divisible by the order of P modulo p, the point n P is at infinity modulo p, and thus
the denominator is divisible by p.

We may can prove a general proposition: for a rational point P on an elliptic curve, the denominator
of a point n P is divisible by a prime number p if and only if, under the modulo p reduction, the order of
the point P is divisible by n. Specifically, if p is a good reduction, then the denominator of a point nP is
divisible by p if and only if n is a multiple of the order of the point P modulo p. In this problem, A = 37,

so all prime numbers other than 37 can appear in the denominator of n P as powers. O

Exercise 1.6 Show that the congruent number elliptic curve Dy? = 2% — = has Weierstrass
equation y? = 2> — D?2. Now use the group law to find two rational right-angled triangles

of area 5.
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Proof. Consider Dy? = 23 — z, multiply both sides by D? and let u = Dz, v = D?y, we have that
vP=ud— D%, ie. y?=2a>-D%.

Let D = b5, then the curve is Eos : 42> = 3 — 25z, the rational points on this curve correspond to
rational right triangles with an area of 5. Noting that (1, 1) is a solution for mod 5, analysis shows that

P = (—4,6) is a solution to E95. The calculated side lengths of the triangle are:

3 20 41
27376)°

Using the group law, the multiple of P = (—4,6), 2P is calculated as we did before. The reuslt is
op — <1681 62279

T 1728) . Similarly, the second triangle can be constructed as:

1519 4920 3344161
492 7 15197 747348 )

Exercise 1.7 Let E be an elliptic curve over Q with Weierstrass equation 3> = f(x).

(i) Put the curve Ej : dy? = f(x) in Weierstrass form.

(ii) Show that if j(F) # 0,1728 then every twist of E is isomorphic to E; for some
unique square-free integer d. [A twist of F is an elliptic curve E’ defined over Q that is

isomorphic to E over Q. ]

Proof. (i) Let the Weierstrass equation for E be y?> = f(z) = 23 + Az + B, and E,; be defined as
Eg:dy? = 2% + Az + B. Let u = dx, v = d*y. Substituting, we have

(ORI ORNIEIIET & o

Multiplying both sides by d>, we obtain the Weierstrass equation for £, as
y? = 2% + Ad%z + Bd®.

(i1) Let the Weierstrass equation and the j-invariant of F be

4A3

2 3 .
— 4 Az + B, j(E)=1728 — —
y =2+ At B, j(E) 4A3 + 2782

(GTM106, PropX.5.4) If j(E) # 0, 1728, then the automorphism group of E is {£1}, and all twists are
quadratic twists. We know that quadratic twists are parameterized by Q* /(Q*)2, and can be uniquely

represented by the square-free integer d as

Ey:y? =23 + Ad%z + Bd>.
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O

Exercise 1.8 The elliptic curve E) over C with equation y?> = x (z — 1) (z — )\) has j-invariant

B A+’
T TR

Find the complex numbers )\ for which F, =~ FE,,.

Proof. Obviously two elliptic curves over C are isomorphic if and only if their j-invariants are equal.
Therefore, we only need to find all ' s.t. j(\) = j(\).
E : y?> = x(x — 1)(x — )\) is symmetric curve under the permutation of the set {0, 1, A}, these

permutations are given by S5, which corresponds to the following transformations:

e 0—0,1—=1 A= Xz~ x

c 00,1\ A= 1liz—1/x;
c0—1L1—0A=>Xax—1—ux

c 01,1 A A=02—1/(1-2x);
c 0= AN1= 1L, A= 02— a/(x—1);
c 0= N1 0, A= Lz (z—1)/x.

Thus,

1 1 AoA-1
N=X\ —, 1=
"N B N e D

O

Exercise 1.9 (i) Find a formula for doubling a point on the elliptic curve E : y? = 23+ ax +b.
[In your answer you should expand each numerator as a polynomial in x.]

(i) Find a polynomial in = whose roots are the z-coordinates of the points 7' with
3T = Og. [Hint: Write 37 = O as 27 = —T. |

(iii) Show that the polynomial found in (ii) has distinct roots.

Proof. (i) For a point P = (z,y) on the elliptic curve E : y> = 23 4 ax + b, the tangent slope k is
b 32% +a

, then 2/ and v/ are:
P =m?—-2z, y =m@x-12)-y.

By substituting and simplifying, we obtain the following explicit formula:

o zt — 2a2? — 8bx + a? ;o 2% + 5az? + 20bx3 — 5a%x? — 4abx — a3 — 8b?
- A(@Ptaz+b) V= 8y(x3 + ax + b)

(ii) Suppose T' = (x,y), then —T = (x, —y). From the dot doubling formula,

2t — 2a2% — 8bx + a?
xTr =
4(z3 + ax + b)




Homework for Elliptic Curves Nicolas Keng

Simplifying, we obtain
32t + 6az? + 12bx — a® = 0.

Thus, the polynomial we are looking for is
P(z) = 32 + 6ax® + 12bx — a*

(iii) Taking the derivative of P(z), P'(z) = 1223 + 12ax + 12b = 12(2® + ax + b). A polynomial
has multiple roots if and only if P(x) and P’(x) have a common factor. Suppose there exists a linear

polynomial Q(x) = cx + d s.t.

P(z) = (cx + d) (23 + az + b) = cx* + da® + acz® + (ad + be)z + bd,

Comparing the coefficients with P(z) we find a = 0 and b = 0. In this case, the curve y? = 23 is
singular, and the discriminant A = —16(4a® + 27b%) = 0, which is not an elliptic curve. Therefore,

P(x) and P’(z) have no common factors, and P(z) has distinct roots. O

Exercise 1.10 Let C be the plane cubic ¢ X?+bY?3 +¢Z3 = 0 with a,b, c € Q*. Show that the
image of the morphism C — P3; (X : Y : Z) — (X?:Y3: Z%: XY Z) is an elliptic curve E,
and put E in Weierstrass form. [You should try to give an answer that is symmetric under

permuting a,b and c. | What is the degree of the morphism from C to E?

Proof. Considering ¢ : C — P3, (XY, Z) v (X3,Y3, 23, XY Z) = (U,V,W,T). Calculate im ¢
satisfies all + bV + cW = 0, T3 = UVW. We awnt to symmetrize the equation, we set 7' = 1, i.e. its

affine transformation, substitute
r=al,y=0V, —x —y=cW
to the equation, yield
zy(x +y) +abc=0, ie y®=a>—432(abc)’

For a inverse image (X,Y, Z), if (X', Y', Z") — (X3,Y3,Z3 XY Z), then for 3rd unit root wy,

wa, w3, we only need wiwows = 1, degp = 3. 0

Exercise 1.11 Let E/Fy be the elliptic curve y? +y = x3. Show that the group Aut(E)
of auto-morphisms of F is a non-abelian group of order 24. [An automorphism of E is
an isomorphism from FE to itself. In this example all the automorphisms are defined over

Fy =F3 (w) where w? +w+1=0. |

Proof. (i) Each automorphism has the form

f:E—E, (z,y) — Wz +rudy + su’z +t), u,r, s, t € Fy,
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substitute that coordinate transformtion into the curve equation and simplify it, we need
w=11ie ue{lww?}, r=s> t?+t=r>

e ifs=0,thenr=0,t2+t=1,t=0o0r1;

«ifs#0,thens’ =1, =s=1, 2 +t=1t=worw?, r=1orworw?, s> =r;

Hence, |Aut(E)| =3 x 2+ 3 x 3 x 2 =24
(i) Non-Abelian: let

d)l : (-T,y) = (W2$ + 1va +wx +w)7 ¢2 : ($7y) = (WQZC,O)QZ/).
Calculate that
610 Ga(,y) = (W + 1wy +wr +w) # (wr +wwy + %5 +w?) = d3 0 61 (x,1),

¢1 0 P2 # ¢2 0 P1, Aut(E) is non-Abelian group. O

Exercise 1.12 Let C' C P? be a smooth plane cubic defined over Q. Show that if C(K) # o
for K/Q a quadratic field extension then C(Q) # @. Can you generalise this result to field

extensions of degree n for other integers n?

Proof. (i) IfVP € C(K), P ¢ Q, let Gal(K/Q) = {1,0}. Then o(P) € C(K). Considering the line
¢ passing through P and o(P), since ¢ determind by P and o(P), then o(¢) = ¢, i.e. ¢ defined over
Q. Hence, we note the third point of ¢ intersects with C' as (), both ¢ and C' are defined over Q, then
Qe C(Q). C(Q) #0.
(i1) It’s wrong. Consider
C/Q:z®+2y° 4+ 422 =0.

We have C(Q) = @, but on the cubic expansion Q(+/2) there is a rational point P = (0 : v/2: —1). [
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2 Example Sheet 2

Exercise 2.1 Find all points defined over the field i3 of 13 elements on the elliptic curve
y2 =3+ + 9,

and show that they form a cyclic group. Find an example of an elliptic curve over Fi3 for
which this group is not cyclic. Are there any examples where the group requires more than

two generators?
Proof. (i) Notice the quadratic residue of F3 is {1, 3,4, 9,10, 12}.

 z = 0: y? = 5, non-quadratic residue, no points.
« x = 1: y?> = 7, non-quadratic residue, no points.

+ x = 2: 2 = 15, non-quadratic residue, no points.

We can find all finite points are (3, 3), (3, 10), (7,2), (7,11), (10, 1), (10,12), (12,4), and (12,9), for a
total of 8 points. Including the point O at infinity, the total number of points is 9.

Now prove that these points form a cyclic group. Compute the multiples of the point P = (3, 3):
2P = (10,12), 3P = (12,4), 4P = (7,11), 5P = (7,2), 6P = (12,9), 7P = (10,1), 8P = (3,10),
9P = O. Thus, the point P has order 9 and generates the [F;3-rational point group, so the group is cyclic.

(ii) Consider the elliptic curve E’ : % = 2341 over F13. We calculate (0, 1), (0, 12), (2, 3), (2, 10),
(4,0), (5,3), (5,10), (6,3), (6,10), (10,0), (12,0), and Opr, for total 12 points. The computation of
E'(FFy3) is isomorphic to Z /27 x 7 /6Z, not cyclic.

(iii) We now prove that there are integers m > 1 and n > 1 with ged(m,q) = 1, st. E(F,) =
Z/mZ x Z/mnZ. At first, by GTM106, CorllIl.6.4, we know that when char F' = p,

« if ged(p, m) = 1, then E[m] = (Z/mZ)?
« ifm = p° thenVe € Z>1, E[p°] = {Og} or E[p°¢] = Z/p°Z.

Then the rank of E[m] < 2 for all m € F,. If rank E(IF;) > 3, by the structure of finite Abel group, we
set
E(Fq) = Z/mZ X Z/RQZ X Z/’ngz X X Z/nTZ, ns 75 0, ni|ni+1.

Thus, for d|ng, E[d] = (Z/dZ)%, s < 2. In the structural decomposition, each Z/n,Z corresponds to a
Z]dZ; but ni|n;y1, d { nq for all factors d of ng, n; = 0. Recursively, we can get E(F,) to have at most

two components, E(F,) = Z/mZ x Z/mnZ, thus E(FF,) has at most 2 generators. O
Exercise 2.2 Let A be an abelian group. Let ¢ : A — Z be a map satisfying
q(z+y)+q(@—y)=2qx)+2q(y)

for all z,y € A. Show that ¢ is a quadratic form.

Proof. Taking y = 0, we have ¢(z) + ¢(x) = 2¢(x) + 2¢(0), ¢(0) = 0. Taking z = 0, q(y) + ¢(—y) =
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2¢(0) + 2q(y) = 2q(y), a(—y) = q(y). Takingy = z, q(2z) + q(0) = 2¢(x) + 2¢(x) = 4q(z). By
induction, we obtain that for any n € Z, q(nz) = n?q(x).

We define
B:AxA—Z, Bloy) =42ty _2‘1('7”) —4W) g,
Verify
1. Symmetry: B(y,x) = al +y) —2q(:r:) 1t)) = B(z,y);
2. Bilinearity: B(x + y, z) = B(z, 2) + B(y, 2),
Thus, B is a symmetric bilinear form. Note that ¢(z) = B(z, x), so q is a quadratic form. O

Exercise 2.3 Find a translation-invariant differential w on the multiplicative group G,,. Show

that if [n] : G,, — G,, is the endomorphism z — 2", then [n]*w = nw.

dx . . .
Proof. w = —. For the multiplication group G,,, we consider the translation 7" : = +— ax, then

x
d(ax dz . L . .

(az) = — = w. Thus, w is translation-invariant. Now consider [n] : x — 2™, calculate
ax x

T*w =

[n]*w = [n]*% _ dot e Tde nw
x xn 1. g '

O

Exercise 2.4 Let E; and E> be elliptic curves over F,, and let ¢ : £y — E3 be an isogeny
defined over I,. Let ¢; be the ¢g-power Frobenius on E; for i = 1,2. Show that yo¢; = @209
and deduce that #F; (F,) = #E, (IF,).

Proof. (i) For i = 1,2, define the g-power Frobenius ¢; : F; — E;, P = (z,y) — P? = (z%,y7).
Therefore, VP € E,

V(91(P)) = »(P?) = (Y(P))! = ¢2((P)), o1 =gd20.
(ii) Rational points |E;(F,)| = deg(1 — ¢;). Obviously
podr=grotp=1po(l—¢1)=(1—¢2)0,

then deg ¢-deg(1—¢1) = deg(1—¢2)-deg ), i.e. deg(1—¢1) = deg(1—a), |E1(Fy)| = |E2(F,)|. O

Exercise 2.5 Let E/Fi3 be the elliptic curve in Exercise 2.1. Without listing its elements,

find the order of E (F,52) and determine whether this group is cyclic.

Proof. We can calculate the trace

trtFrob=a=¢q¢+1— |E(F3)|=13+1-9=5.

10
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Let o, 3 be two roots of the equation X? — 5X + 13 = 0. We know that
|E(Fy52)| =132 +1—a® — 32 =170 — 5(a + () + 26 = 170 — 25 4 26 = 171.

We have proved there are integers m > 1 and n > 1 with ged(m, q) = 1, s.t. E(Fy) = Z/mZ x
7./mnZ in Exercise 2.1, 171 = 32 - 19, then

E(F132) = Z/l?lZ, or E(F132) = Z/3Z X Z/57Z

Note that E(IF13) is subgroup of E(F;32), | E(F13)| = 9 and E(F13) is cyclic, then the g.c.d of the order
of all points must be divisible by 9, which implies E(F;32) = Z/1717Z, i.e. cyclic. O

Exercise 2.6 Show that if ¢ € End(E) then there exists tr(¢) € Z s.t.

deg ([n] + ¢) = n* + ntr(¢) + deg(¢)

for all n € Z. Establish the following properties:
(i) tr (¢ +v) = tr(¢) + tr(1)),
(i) tr (¢%) = tr(¢)” — 2deg(9),
(iii) ¢* — [tr(¢)] ¢ + [deg(¢)]

Proof. We know that the degree mapping deg : End(E) — Z, f — deg f is positive definite quadratic

0.

form, then exists a bilinear from ¢(—, —), s.t.

V¢, ¢ € End(E), deg(¢ + ) = deg ¢ + deg v + q(¢, ¥)).
We can define the trace tr ¢ := ¢(1, ¢), where 1 = id € End(E). Thus,
deg([n] + ¢) = degn] + degé + q([n], ¢) = n* + deg$ +n - trg.

We now establish these properties:

() tr(¢ + ) = q(1,0 + 1) = q(1,¢) + q(1,9) = deg ¢ + deg ¥

(ii) We can take traces in the results in (iii):
tr(¢?) = te([tr(9)]¢ — [deg ¢]) = tr(g) - tr() — tr([deg ¢)).
obviously tr([m]) = 2m, in particular, tr([deg ¢]) = 2 deg ¢. Therefore,
tr(¢?) = (tr¢)* — 2deg ¢.

(iii) Let qg be the dual isogeny of ¢, then qbqg = [deg ¢, note that ¢ +¢3 is self-dual, hence there exists
an integer m s.t. ¢ + ¢ = [m]. Note that

deg(1+4 ¢) =degl +dego + q(1,¢) =1+ degop + tr(¢),

11
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using the dual and taking degrees, we have that
(1+¢)(14+¢) = 1+¢+0+¢¢ = 1+[m]+[degd], deg(1+¢)-deg(1+¢) = deg(1+ [m]+ [deg ¢)).
But deg(1 + ¢) = deg(1 + ¢) since deg ¢ = deg ¢, thus,
(1+deg ¢ + tr(¢))* = (1 +m + deg ¢)* = tr(¢) = m.
Therefore, ¢ + ¢ = [tr(¢)], ¢ = [tr(¢)] — ¢. Now multiply both sides by ¢

[deg ] = 69 = ¢([tr(¢)] — ¢) = [tr(9)]¢ — ¢* = ¢* — [tr(¢)]¢ + [deg ¢] = 0.

Exercise 2.7 Let E be the elliptic curve y? = 23 4+ d. We put

2 44d y (2% — 8d)

3 ;=

2 3

i ow that 7'= (0, is a point of order 3, and that i = (z,y) then
i) Show that T Vad) i int of order 3, and that if P h
E=x(P)+ax(P+T)+x(P+2T).

(i) Verify that 1? = ¢3 + D for some constant D (which you should find).
(iii) Let £’ be the elliptic curve y?> = 2 + D, and ¢ : E — E’ the isogeny given by

(z,y) = (,n). Compute ¢* (dz/y).
. . 322 . . . .
Proof. (i) Calculatic 2T : k = Qi =0, tangent line ¢ : y = V/d, —2T = T i.e. 3T = 0, T is a point

Yy
with order 3. Let P = (z,y),

S

Yy —
X

e calculate P+ T: k1 =

,2(P)+2(T)+z(P+T) =k
+

S

)
x

e calculate P+ 2T = P —T: ko = ,2(P) +z(2T) + z(P + 2T) = k3.

Therefore,

¢(P)+x(P+T)+x(P+2T) = k¥ + k3 — 2(P) — 2(T)
_ VO VD

z? x?
P +2d -2 20 +d)+2d—a® 2P +4d

&.

2 22 2

2( 3 2 3 3
o .3 y(x®—8d) (z° + 4d)
(II)D_T’ _f - .ZU6 - .’,13'6
(@4 d) (@ - 8d)° — (4 +4d)>  —27dab oy

26 6
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e g(TAdY _atosd o de g ESMdr de .
(iii) d§ = poll Il enqﬁ?_;_m_?,

Exercise 2.8 Let E/F, be an elliptic curve and K = F,(E). Show that (i is meromorphic

on C and satisfies the functional equation (x (1 — s) = (x (s).

Proof.
e(s)= [ A-N@™ "= J] @-q e

peEXK peEX K
Thus, (x(s) is defined as the value of the elliptic curve zeta function at 7' = ¢~ *, that is (x(s) =
1 —aT + qT?
Zr(q™®), where Zg (T) = = 1—|E(F,)|.
K(q ),Were K( ) (1—T)<1—qT)’a q—|_ | ( q)|
(i) Note that Zx (X) is rational function of X, X = ¢~* is integral function, then the composition

Cr(s) = Zk(q™?*) is meromorphic on C.

(i1) Note that for elliptic curves, we have

()2

Let T = ¢—*, and we can compute (i (1 — s):
Cr(—s) = Zr(¢ ") = Zr ().

We can also compute ( (s):

1

Ce(s) = Zr(q™) = Zx(T) = Zic (qT) — Ze(@ ).

Thus, (x (1 — s) = (k(s), and the functional equation holds. O

Exercise 2.9 Let E/F, be an elliptic curve with p an odd prime. Show that there exists an
elliptic curve E'/F,, with
HE(F,) + #E'(F,) = 2(p +1).

Show further that the groups E(F,) x E'(F,) and E (F,2) have the same order, but need

not be isomorphic.

Proof. Let the elliptic curve E : y?> = f(z), where f(z) is a cubic polynomial. Letd € F, be a

non-square element, and define £’ : dy? = f(z) as a quadratic twist of E. For any = € IF),, the Legendre

symbol <f(w)> of f(z) takes the value 0,1, —1.

1. If f(x) = 0, then both F and E’ have a point (z, 0).

2. If <f($)> = 1, then E has two points and £’ has no points.
p

3. If <f($)> = —1, then E has no points and E’ has two points.
p

13
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In addition, every curve has a point O at infinity. therefore,

1o 1+ (1)) - 5 (1),

z€F, z€F, p
|E'(F,)| :1+;]F: (1+ <df](f)>> :p+1—zZF: ("Y)

Thus, |E(Fp)| + |E'(Fp)| = 2(p+ 1).
(i) Let |[E(Fp)| = p+ 1 — a, then |[E/(F,)| =p+1+a,

|E(Fp) x E'(Fp)|=(p+1-a)(p+1+a)=(p+1)>-d

On the other hand, note that on F 2, Frob,: = Frobi, and its eigenvalue is o2, 32, where o, /3 is a root
of the characteristic polynomial 72 — aT + p of Frob, on E. Therefore, by Vieta’s theorem and Weil’s

conjecture,
|E(Fe)| =1—(a®+ %) +a?p2 =1—(a® — 2p) +p* = (p+1)* — a®.

Thus, |E(Fp) x E'(Fp)| = |E(F,2)|.
(iii) Taking p = 13, the elliptic curves in Exercises 2.1 and 2.5 satisfy the above result. O

Exercise 2.10 Let E be an elliptic curve over F,, (p a prime) with #E(F,) =p+1—a, and
let ¢ : E — E be the p-power Frobenius, i.e. ¢ : (z,y) — (zP,yP). Let ¢ = [a] — ¢. (i) Show
that ¢ o) =1 o¢ = [p]. (ii) Show that if i) is separable then E [p"] = Z/p"Z for all r > 1.
(iii) Show that if p > 5 and E [p] = 0 then #E(F,) = p + 1.

Proof. (i) The Frobenius endomorphism ¢ satisfies the characteristic equation ¢ — a¢ + [p] = 0, where
a=p+1—|E(F,)|. Then

¢o = ¢(la] — ¢) = [a]p — ¢* = [a]é — (ag — [p]) = [p].

Similarly,

Yoo =([a] - ¢)¢ = [a]p — ¢* = [a]¢p — (ad — [p]) = [p)]-

Thus, ¢ op =1 o = [p].

(ii) Note that 1) = [a] — ¢ is essentially the dual Frobenius qg, deg v = p. If ¢ is separable, then its
kernel is of size p. From ¢ o ¢ = [p], we know that keri) C E|p|, so E[p] contains a subgroup of order
p, so E[p] = Z/pZ. Furthermore, when v is separable, the formal group has height 1, which means that
for any r > 1, we have E[p"] = Z/p"Z.

(iii) If E[p] = 0, then the characteristic polynomial of the Frobenius ¢ is T2 — aT + p, and a =
0 (modp), that is, a = kp for some integer k. From the Hasse bound |a| < 2,/p, substituting a = kp
yields

|k:|§\23<1, (p>5).

14



Homework for Elliptic Curves Nicolas Keng

Thus, k = 0, thatis,a = 0, |[E(F,)| =p+1—a=p+ 1 O

Exercise 2.11 Let ' € R[[X, Y]] be a formal group over a ring R. Show that there is a unique
power series (7)) in R[T] with ¢ (0) =0 and F (T, +(T)) = 0. Find +(T") for the multiplicative

formal group @m

Proof. (i) Assume the formal group law

PF(X,Y)=X+Y+ ) a;X'Y7 € R[[X,Y]]
i,j>1
Satisfies
F(X,0)=X,F(0,Y)=Y, F(X,Y)= X +Y (moddeg?2),

Expand F(T,+(T)) = 0, and substitute the comparison coefficients to obtain

UT) = =T = ayT'((T)),

4,521

o

Assume ((T) = Z ¢;T", substitute the above equation and compare the coefficients to obtain ¢; =
i=1

—1, ¢, is determined recursively by the coefficients of the lower-order terms. Furthermore, expanding

F(X,:(0)) and comparing the coefficients with F'(X,0) = X yields
F(X,0)= X (mod deg3) = F(X,Y)=X+Y +¢- XY (mod deg3).

Thus, there exists a unique power series ¢(7") such that +(0) = 0 and F(T, (1)) = 0.
(ii) The multiplicative formal group Gy, is defined as I (X,Y)=X+4Y + XY, requiring +(T') to
satisfy:
FT,uT)=T+uT)+T-u(T)=0=(T)(14+T)=-T,
T

Exercise 2.12 Let R be an integral domain of characteristic zero, with field of fractions
oo o

K. Suppose that f(T) = > (ap/n!)T™ and g(T) = > (by/n!)T™ are power series in K[1T]
n=1 n=1

satisfying [ (¢(T)) = g (f(T)) = T. Show that if a; € R* and a,, € R for all n, then b, € R
for all n. [Hint: You should repeatedly differentiate f (¢(7')) = T and then put 7' = 0. |

Proof. From f(g(T")) = T, taking the derivative of both sides with respect to 7', we obtain f'(g(T)) -
¢'(T) = 1. Substituting into 7" = 0,

1
f/(O) g/(O) = albl =1= b1 = a—l

We know that a; € R*,so by € R.

Next, we prove b, € I? by induction for n. Assume that for all j < n, we have b; € R. Consider

15
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the nth derivative of f(¢g(7")) = T at T = 0. From Faa di Bruno’s formula:

dr
drm

F(@) =>" P (g(D)) - Buwlg (D), 9" (T),...,g" (1)),
k=1

where B, ;. is a Bell polynomial. So at 7" = 0, we have

9(0) =0= f®0) = a, ¢Y(0) =1b;.

Thus:

> ar Byg(bi,ba, ... by_ps1) = 0.
k=1

Separating the & = 1 term, noting that B,, 1 (b1, . .., bs) = b, and B,,  is a polynomial in by, . . ., by 41,

the above summation becomes:

n n
. 1
albn—i— E ak'Bn,k(bl7---7bn7k+l) :0’ 1.e. bn: _671 E ak-Bn,k(bl,...,bn,kJrl).
k=2 k=2

By the induction hypothesis, b1,...,b,—1 € R, a1 € R*, so b, € R. We complete the proof by

mathematical induction. O

16



Homework for Elliptic Curves Nicolas Keng

3 Example Sheet 3

Exercise 3.1 Let E be the elliptic curve over QQ given by
y2+xy::1:3723:+1

for which the discriminant A is equal to -61. For each prime p, let Ep be the reduction of
E modulo p.

(i) Compute the cardinality of Ep(Fp) for p=2.,3,5,7.

(ii) Prove that the torsion subgroup of E(Q) is trivial.

(iii) Prove that the torsion subgroup of E (Q2) has order dividing 8.

(iv) If P =(1,0) in E(Q), prove that 7P and 9P do not have integral coordinates.

Proof. (i) For p = 2,3, 5,7, we can calculate as follows:

*p=2, Eg/[ﬁ‘g:y2+xy:m3+1, EQ(FQ) ={(0,1),(1,0), (1 1), 0}, 4 points;

« p=23,E3/F3: 9y +ay=a®+a+1, E3(F3) = {(0,1),(0,2),(1,0), (1,2),(2,2),0}, 6 points;
* p=5, E5(F5) = {(0,1),(0,4), (1,0), (1,4), (2,0), (2,3), ( 2),(4,4),0}, 9 points;
» p=T, E7(F7) = {(0,1),(0,6), (1,0), (1,6), (6,2), (6,6), 0}, 7 points.

(i) We konw that E(Q)r injects into all of these groups in (i), note that ged(4, 6,9, 7) = 1. Hence
|E(Q)tor] = 1.

(iii) Note that 2 f A = —61, then E has good reduction on p = 2. Thus, E(Qy) < E»(F2). We
konw | Ey(Fy)| = 4 in (i), then E(Qs)ior has order dividing 4, furthermore, 8.

(iv) Note that points with integer coordinates will not be at infinity after reduction modulo Vp. For
7P: Reduced modulo p = 7, E7(F7) is a cyclic group. The point P modulo 7 is (1,0) € Fr (F7), and
the order of P in E7(FF7) is 7. Therefore, 7P = O (mod 7), so 7P has no integer coordinates. For
9P: Reduced modulo p = 5, the order of E5(F5) is 9. The point P modulo 5 is (1,0) € E5(Fs), and
the order of P in Fs5(F5) is integer divisible by 9. Therefore, 9P = O (mod 5), so 9P has no integer

coordinates. 0
Exercise 3.2 Find the torsion groups over Q for the elliptic curves (i) y?> + zy +y = 23, (ii)
y? — 2y — 4y = 2% — 422, (iii) y? = 2 + 52? + 4x.

Proof. We’ll use Lutz—Nagell theorem: if (z,y) € E(Q)wr, y* = 2 + ax? + bx + ¢, then (z,y) € Z2,
y = 0 or 3?|A.
(i) The substitution y +— i(y — x — 1) gives us an Weierstrass of the form

F =434+ +20+1, A=-26

By Lutz—Nagell theorem, if (z,y) € E(Q)or, then

« y=0:let P=(0,0), then 2P = (0,—1),3P = O;
* 3?|A: impossible.

17
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Thus, the torsion group is Z/3Z.
(ii) The substitution y +— 5 (y + x + 4) gives us a Weierstrass form of the form

E'y? =42® —152% + 82+ 16, A =—-1664 = —27 .13,

By Lutz—Nagell theorem, if (z,y) € E(Q)or, then

« y=0:let P = (0,0), then 2P = (4,8), 3P = (2,2), 4P = (2,4), 5P = (4,0), 6P = (—1, —1),
7P = O;

* 32 | A: no other points.

Thus, the torsion group is Z/7Z.
(iii) B : y? = 2% + 522 + 4z, A = 2304 = 2% - 32. By Lutz-Nagell theorem, if (z,y) € E(Q)or,
then

« y = 0: points (0,0), (—1,0), (—4,0);
42 | A: points (—2, £2), (2, £6).

We can calculate (—1,0) has order 2, (2, 6) has order 4. Thus, the torsion group is Z/27 ® Z/4Z. [

Exercise 3.3 Let £/Q be the elliptic curve y? = 23 + Az where ) is an integer. For p a prime

not dividing 2\ we write #E(Fp) =p+1—ay,. Show that if p =4k 4 1 then

ap = A (2:) (modp) .

Deduce that a, = 0 (modp) if and only if p = 3 (mod4).

Proof. (i) Consider the elliptic curve E : y? = 23 + Az over the finite field F,,, then

me =1y (1 (5)) = R (55).
=0

=0

where () is the Legendre symbol. From |E(F,)| = p+ 1 — a,, we can deduce
p

p—1 3
x® + Az
=3 ( ) |
x=0 p
0
For x = 0, we have <> = 0. For = # 0, we have:
p

(=)-G) (=7

By Euler’s criterion, the Legendre symbol satisfies <a> = a?~1/2 (modp) for a # 0 (mod p). Since
p

18
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p = 4k + 1, we have

2 p—1
(;) = 22 (mod p) , (x ;— A) = (22 4+ \)?* (modp), ap,=— Zajzk(aﬁQ + A% (modp) .
=1

By the binomial theorem, we can expand (22 + \)2* to the form
2k
(22 + N2 = ( ))\] =

Thus:

— 2k X (2K §, Ak—2j 2k | 6k— 2;
a=-31 Z(j)m _ Z( )x Zx (modyp) .
=1

Consider m = 6k — 2j. By Fermat’s Little Theorem, Zx 12™ = 0(modp) whenp — 1 = 4k { m.

Therefore, the nonzero terms satisfy 4k | m, i.e., 2k | (3k — j). Since 0 < j < 2k, then j = k. At this

4k_xp1

time, = 1(modp) forz=1,--- ,p—1,s0

B (%)A’“Z i _( >)\k (C1) = AF <2:> (mod p) .

(2). First, if p = 4k + 1, from (i) we have
2
ap = )\k< k) # 0 (modp) .

-1 0
Take p = 4k + 3, note that () = -1, <p> = Oand
p

(e ) () () ().

From symmetry we obviously have

B (5 (3)(55) -

r=1

Thus, a, = 0, i.e., a, = 0 (mod p). O

Exercise 3.4 (i) Prove that the torsion subgroup of the group of Q-points on the elliptic
curve y?> = 23 + d has order dividing 6. (ii) Show that the elliptic curve y?> = 23 + 5 has
infinitely many Q-points.
Proof. (i) Pending.

(ii) Take a point P = (—1,2) € E(Q). If P is a torsion point, then from (i) we know that its order

19



Homework for Elliptic Curves Nicolas Keng

is divisible by 6. However, calculating 2P yields

41 2
(1,299
16 64
The coordinates are non-integer. However, according to the Lutz—Nagell theorem, the coordinates of the

torsion points must be integers, a contradiction. Therefore, P is an infinite-order point, and thus E(Q)

has infinite points. 0

Exercise 3.5 Show that if £ has Weierstrass equation
y? =23 + ax® + ba

with a,b € Z and P = (z,y) € E(Q) is a point of finite order, then either z = 0 or z divides
b and x + a + b/x is a perfect square. [Thinking about how the proof of Lutz—Nagell works
might help you find a short proof.]

Proof. Similar to the proof of Lutz—Nagell theorem, set Q = (0, 0), note that 2Q) = O, @ is a 2-torsion
point. If P = (x,y) € E(Q)qor is a torsion point, then P + @ is also. Calculate kpg = y/z,
2 3 2 b b
t(P+Q)=k —a—z= (g> —a—x:LW—a—x:—.
x x x
If = 0, then P = (0,0) = Q € E(Q)r- Ifx # 0, P + @ is also a torsion point, by Lutz—Nagell
theorem, z(P + Q) = b/z € Z, x|b. Atthat time, (y/x)?> =z +a+b/x € Z,ie. v +a+b/zrisa

square. O

Exercise 3.6 Let p > 5 be a prime, and let K be a finite extension of (Q,. Show that every
elliptic curve E/Q, has a minimal Weierstrass equation of the form y? = 23 + ax + b with
a,b € Z,. What are the conditions on v, (a) and v, (b) for this to be a minimal Weierstrass
equation? Show that if £/Q, has good reduction then E/K has good reduction? Is the
corresponding statement true if we replace "good” by "multiplicative”? What about the

additive case?

Proof. (i) Existence of minimal Weierstrass equation: notice p # 2, 3, then we can simplify the Weierstrass
equation into the form y? = x3 + ax + b, a,b € Q, through coordinate transformation. We can adjust

a,bs.t. a,b € Z, by scaling
z e ulz, y— udy, u e Q, =d = uta, b = uOb, A" = u'?A.

We can choose one of that minimizes the p-adic valuation of A.

(i) Let z — v 2z, y — u 3y, thena = u™?

vp(b) — 6vp(u) > 0, vp(A") = vp(A) — 12vp(u). Set vy(u) = k > 1, notice the v, (A’) is minimal, then

a € Zp, ie. vp(a) — 4vp(u) > 0. Similarly,

20



Homework for Elliptic Curves Nicolas Keng

that scaling must be the finally type, i.e.
vp(a) < 4dorvy(b) <6, wvy(a),vy(b) € Z.

(iii) If £/Qy has good reduction, then exists a minimal Weierstrass equation s.t. v,(A) = 0. For
any finite extension K /Q,, note v’ as the extension of v, then v'(A) = evy(A) = 0, where e is the
ramification index. Thus, F'/K has a good reduction.

(iv) Multiplicative reduction and additive reduction:??? O

Exercise 3.7 Let K be a field of characteristic not 2. Let E/K be the curve defined by
the singular Weierstrass equation 3> = 2 (z +1). Find a rational parametrisation t
(¢ (t), (t)) with ¢ = 0,00 mapping to the singular point and ¢t = 1 mapping to the point at
infinity. Use this to show that E.(K) = K*. [For the last part, try to find a method similar

to the one used in lectures in the additive case.]

Proof. (i) The curve is singular at point (0,0). We set y = kx substitute into the equation:
(kz)? =2*(x + 1), x = k* — 1, y = kz = k(K> — 1).

This parametrization (z,y) + (a(k), B(k)) = (k? — 1, k(k? — 1)) satisfies

o k=+1: a(£1) = f(£1) = 0, i.e. =1 mapping to the singular point;

* k= o00: a(oco) = (00) = 00, i.e. 0o mapping to the infinity point.

kE+1 . N
Lett = T—i_l, the required parametrization is

which satisfies

* t=0: ¢(0) = ¢(0) = 0, i.e. 0 mapping to the singular point;
s t = oo: qﬁ(oo) — 0, ¥(c0) — 0, i.e. oo mapping to the singular point;
e t=1: (i) = 00, (1) — oo, i.e. 1 mapping to the infinity point.
£),0(t) t#1
(i) Let f : K* — Ep(K), t — (90, w(t)) *7# . (i) tells us f is a bijection. If
Og t=1

_ _ 4t 4t1(t; + 1) _ _ 4to Ata(ta + 1)
P=s= (Gt i) 9= (G )

we can calculate that P + Q = f(t1t2). If P = Op, the result is also correct, i.e.the group structure of
E,s(K) is correspond to multiplication group of K*, therefore, Fns(K) = K*. O

Exercise 3.8 Let p be a prime number of the form u? + 64 for some integer u (e.g. p =
73,89,113,233,...). Choose the sign of u so that ©« = 1( mod 4). Consider the two elliptic
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curves

E:y2zx3+ux2—16x
E':y? =2 — 2ua® + px

Prove that I and £’ are isogenous, and that both curves have good reduction at all primes

different from p. Can you say anything about the Tamagawa numbers ¢,(E) and ¢, (E')?

Proof. (i) From Exercise 4.1, for the general curve y? = x3 + az? + bz, the 2-isogeny with (0, 0) as the

kernel is 32 = 23 — 2ax? + (a® — 4b)x. Here a = u and b = —16, so the 2-isogeny is:
y? =2 — 2ux® + (u? + 64)x = 2° — 2ua® + pa

This is exactly E’. Therefore, E and E’ are isogenous.

(i) Compute the discriminant:
Ap = 256p, Ap = —256p°.

Thus, for any odd prime ¢ # p, we have £ t Ag and ¢ + Agy, so both E and E’ have good reductions at
{#p.

(iii)) We know that for multiplicative reduction, the Tamagawa number depends on whether the
reduction is split or non-split. First, note that v,(Ag) = 1, v,(Ag) = 2, so E, E’ are both multiplicative
reductions at p.

For E: The modulus of the curve pis y? = 23 +ux? — 16x. The singular point (s, y) satisfies y = 0
and 0f/0x = 0 (mod p). Noting that s> + us — 16 = 0 (mod p), substituting 0 f /Ox yields us = 32
(mod p). Letz = s + X, y = Y, and substituting into the equation yields Y2 = (3s + u) X? (mod p).

Therefore, the slope of the tangent is 3s + u. Calculation:
(3s +u)? = 952 + 6us + u* = 9(—us + 16) + 6us + u® = 48 + u’.

But u? = —64 (mod p), so (3s + u)? = —16 (mod p). And p = u? + 64 = 1 (mod 4), so 3s + u is
the square modulo p. This means the reduction type is splitting multiplication reduction, so ¢, (E) = 1.
Similarly, for E’, we can also prove that the tangent slope is —2u, (u/8)%2 = —1, and —1 is the fourth
power, so —2u is the square modulus p. Therefore, the reduction type is splitting multiplication reduction,
$0 ¢p(E’) = 1. In summary, ¢,(E) = ¢,(E’) = 1. O

Exercise 3.9 (i) Let E be an elliptic curve over an algebraically closed field K. Let ¢ : E — E
be a morphism of curves (not necessarily an isogeny). Show that if ¢ has no fixed points,
then ¢ (and hence also ¢" ) is a translation map.

(ii) Let C'/F, be a smooth projective curve of genus one. Show that C (F,) # @.

Proof. (i) Define the mapping:
fiE=E, f(P)=¢(P)-P.
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Since ¢ and group operations are morphisms, f is also a morphism. F is a projective curve, so f is either
a constant-valued mapping or a surjective mapping. If f is a surjective mapping, then there exists P € E
such that f(P) = O, i.e., »(P) = P, which contradicts the fact that ¢ has no fixed points. Therefore, f

must be a constant-valued mapping, that is, there exists () € E such that for any P € F, we have:

$(P) = P+ Q.

Thus, ¢ is a translation mapping. Furthermore, ¢"(P) = P + n(), also a translation mapping.
(i1) Note the Hasse—Weil bound:

ICE) = (¢ + 1) <2y/q = |C(Fp)| 2 ¢ +1 -2/
Forqg>2,q+1-2,/qg>0,s0 C(F,) # @. O

Exercise 3.10 Let £/Q, be as in Question 6, with minimal discriminant Ag. Show that
vp (AEg) can take any positive integer value, but that if v, (Ag) > 12 then either E or its

quadratic twist by p has multiplicative reduction.

Proof. Pending. O

Exercise 3.11 (Some group theory needed for Question 12.) For A an abelian group and

n > 2 an integer we define
_ #coker([n]: A — A)

1) = ] A A)

(It is undefined if either group is infinite.) Show that if A C B is a subgroup of finite index,
and either ¢(A) or ¢(B) is defined, then they are both defined and ¢(A) = ¢(B).

Proof. First, the mapping is multiplication by n, so the kernel is the n-torsion point, and the cokernel is
A/nA.

(4) = #eoker([n] : A — A)  |A/nAl

D= dker(n] - A > A) A

Thus, the finite group C' = B/ A gives a short exact sequence
0—A—B—C—0,

Applying the mapping multiplication by n yields the commutative graph:

0 A B c 0
ol o |
0 A B C 0

The snake lemma gives an exact sequence

0 — A[n] — B[n| —» C[n] = A/nA — B/nB — C/nC — 0,
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If I fq(A) is defined, then |A/nA| and |A[n]| are finite. Since the exact sequence and C' are finite, we
know that | B[n|| and | B/nB]| are also finite, so ¢(B) is defined. Similarly, if ¢(B) is defined, then ¢(A)

is also defined. Furthermore, the order of the alternating product

|Bln]| - [A/nA]-|C/nC]| _
[A[n]| - [Cn]] - |B/nB|

Since C' is a finite Abelian group, we have: |C[n]| = |C/nC]|, so

A/nA| _ |B/nB|
ARl ~ (Bl

q(A) = q(B).
O

Exercise 3.12 Let K be a finite extension of Q,. Let E/K be an elliptic curve and n > 2 an
integer. Use Question 11 and the theory of formal groups to show that

(i) #(OK/(OK)") = #n(K) - #(Ox /nOk),

(i) #(E(K)/nE(K)) = #E(K)[n] - #(Ok /nOk).

Proof. (i) Consider the group B = O, so

05/(05)"]
1B) =@

Let 7 be the uniformizer of K, and take r large enough so that the logarithmic map log : 1 + 7" O —
Ok is a group isomorphism. This existence is due to the fact that K is a finite extension of Q. Let
A =14+ 7"0k, then A is a finite exponential subgroup of B. Under the isomorphism log : A — Ok, a

[n] mapping on A corresponds to a multiplication by n on O, so

_ [A/nA]

1A = T =

[(Ok /nOk)|.

Since A is a finite exponential subgroup of B, from Exercise 3.11 we have ¢(B) = ¢(A), which is the
result required in ().
(ii) Consider the group B = E(K), so

_B)/mBE)|

1B) = B

Let 7 Let A be a uniformizer of K and let r be large enough so that the logarithmic map log : E(ﬂ’" Ok) —
Ok is a group isomorphism, which exists because of the formal group theory of elliptic curves. Let
A=F (7" Ok ), then A is a finite exponential subgroup of B. Under the isomorphism log : A — Ok, a

[n] mapping on A corresponds to a multiplication by n on O, so

_ [A/nAl

1A= Ty =

[(Ok /nOk)|.-
Since A is a finite exponential subgroup of B, from Exercise 3.11 we have ¢(B) = ¢(A), which is the
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result required in (ii). O

25



Homework for Elliptic Curves Nicolas Keng

4 Example Sheet 4

Exercise 4.1 Let E and E’ be the elliptic curves (defined over a number field K) given by
E:y =24 ax? +br E :y*=2>+d2° +V2

with o/ = —2a, b = o> — 4b. Let ¢ : E — E’ be the 2-isogeny given by ¢ (z,y) =
(y2/x2, Y (mz — b) /x2)

(i) Show that 7" = (0,0) belongs to ¢ (E(K)) if and only if & € (K*)°.

(i) Let P = (x,y) in E'(K) with P # O,T'. Let t € K be a square root of z. Show that
¢~ (P) = {(z1,91) , (22, 92)} where

1 1
331:5(53—@4'9/?5), Y1 = x1t, 33225(55—@—11/15), Yo = —Tot.

(iii) Define o : E'(K) — K*/(K*)* via a(0) = 1,a(T") = ¥ and a(z,y) = = if z # 0.
Show that kera = ¢ (E(K)).

(iv) Suppose the line y = Az + v meets the curve E’ in points P;, P;, P; (counted with
multiplicity). Show that if P, = (x;,v;) for i = 1,2,3 then z12023 = 1.

(v) Deduce that « is a group homomorphism. [There will be some special cases you

need to check.]

Proof. (i) Take Q = (z,y) € E(K) s.t.

y? y(a® —b)

0@ = (517 0) =1 = 00

Substituting into ) = (x,0). Note that ¢(0,0) = O # T”, so x # 0. Thus, z satisfies

0=2"+ar’ +br=z(2* +ar +b) = 2> + ax + b =0,
This equation has a solution in K ifand only ifits discriminant a® —4b is a square in K. Since a?—4b = V/,
we have b’ € (K*)2.

Conversely, if b € (K*)?2, then there exists x € K such that 22 4 ax + b = 0. Taking Q = (z,0),
then Q € E(K) and:

0 0-(x2—0) ,
#(Q) = <xz’562> =(0,0)=1T1".
(i) Taking t € K such that t* = . definition:
S (R N
331—2 r—a r ) Y1 = 11, $2—2 r—a i)’ Y2 = —I2l,

we check (z1,y1) and (z2,y2) on E and ¢(x;,y;) = P.
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, yi _ (zat)® o ,
First, calculate ¢(x1,y1). Take i e t* = z, verify:
1 1
Wb _ @ —8) _, 3-b_
2 = 2 =t =Y
xy xy x1

Calculate 22

T4 442 2t 4 4dx o

since P € E', substituting y? = 23 + a’2? + b'z = 2% — 2a2? + (a® — 4b)z, we obtain

2
2_(1:7a) —-2b (x—a)y
1= 2 T
vy
note that (v — a)? — 4b = > = ~5» We obtain
x t
2 2
2 y©  (—a)y 1 [y y (y )
— b = — _— _ — = — | — —
1 2 T o i\ re-ay) =5 (7 +E-a9),
therefore ) y y
g by gtle—a _y 4 @-a)
1 2t T 2 X1 ’

This proves ¢(x1,y1) = (x,y). Similarly, ¢(z2,y2) = (z,y). Since ¢ is 2-isogeny, its kernel size is 2,
so for P # O, T', there are exactly two preimages, namely ¢~ (P) = {(z1,y1), (v2,2)}.

(iii) If P € ¢(E(K)), then there exists Q € E(K) such that ¢(QQ) = P. Obviously, when P = O
orP=T,a(P)=1.

If P = (z,y) and = # 0, then from (ii) we know that there exists ¢ € K such that > = z, such
that z; = %(x —a+ y/t) € K. From this we have t = y/(2z1 — (z — a)) € K, so x is square,
that is, a(P) = 1. Conversely, if «(P) = 1, P # O,T’, take t € K such that > = x, and let
xr] = %(x —a+y/t) € K, then (x1,21t) € E(K) and ¢(z1,x1t) = P,so P € ¢(E(K)). Therefore
kera = ¢(E(K)).

(iv) Let P; = (x;, y;) be the intersection point and substitute into the £’ equation, we have
Az +v)? =2 +da® + Vo= 2%+ (d — N)2® + (V' — 2 )z — v* =0,
the roots of this cubic equation are x1, x2, z3. By Vieta’s Theorem,
T1xoxy = V2.

(v) Consider the group structure of F, i.e., let R = —(P + @), then P, @, R are collinear.
If the line does not pass through O, T, then the line is non-perpendicular and can be written as

y = Az + v. From (iv), if the x-coordinates of P, (), R are all nonzero, then

rprorr = 1V° = a(P)a(Q)a(R) = a(P)a(Q)a(P+ Q) =1 = a(P + Q) = a(P)a(Q),
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note that the values of a(P) are all in the sense of (mod(K *)?).
If the line passes through O, WLOG we may assume P = O,so a(P) =1, P+ Q = Q,

a(P+Q) = a(Q) =1-a(Q) = a(P)a(Q).

If the line passes through 77, WLOG we may assume P = T”, then «(P) = b, v = 0. Substituting

into the curve equation, it is clear that xgz g = b, then
(Tha(Q)a(R) =V -2q-zp=b -V =b? € (K*)?
then
a(T)a(Q)a(R) = 1= a(R) = a(T")a(Q) = a(T’ + Q).
Thus « is a group homomorphism. O

Exercise 4.2 Prove that 2 is not a congruent number.

Proof. Let’s recall the definition of a congruence number: a positive integer n is a congruence number

3

if and only if the elliptic curve E : y?> = 23 — n2x has infinitely many rational points. For n = 2,

consider the elliptic curve E : y? = 23 — 42, whose 2-isogeny curve is E' : 4> = 2® + 16z. Define the

homomorphism:
0
0 BQ — QY@ P=@yd’ "7 (med@¥)?).
—4 =0
0
ap  E'(Q) = Q% /(Q%)?, P=(zy)—d 7 (mod Q7)2).
16 =0

We can use the Lutz—Nagell theorem to find that the torsion points of E are (0,0), (£2,0), O, and the
torsion points of E’ are (0, 0), O.
We calculate im ag:

1. O: ag(0) =1,

2. (0,0): @p(0,0) = —4 = —1 (mod(Q*)?);

3. (£2,0): ap(£2,0) = £2.
Thus, | im ag| = 4. Then, we calculate im cgyr:

1. O: OéE/(O) = 1;

2. (0,0): apr(0,0) = 16 = 1 (mod(Q*)?).
Thus, |im ag/| = 1. Then, we note that 2-descent gives

grank E(Q) _ limag| - |imag| _ 4x1 _
4 4

L,
So rank F(Q) = 0, therefore 2 is not a congruent number. O
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Exercise 4.3 Compute the rank of E(Q) for each of the following elliptic curves E/Q. (i)
y? = 23 + 622 — 2z (i) v? = 23 + 822 — Tz (iii) y? = 2 — 322 + 10z (iv) y? = 2> — 377x.

Proof. Consider the elliptic curve £ : y> = 3 + az? + bx, whose 2-isogeny curve is £’ : y? =

23 — 2az? + (a® — 4b)x. Define the homomorphism:

0
ap: BQ) = Q@) P=@yeod” °7 (moag¥)?).
b =0
/ X X\ 2 €z 3;‘7&0 X\2
ap : E'(Q) —» Q% /(Q¥)?, P=(z,y) (mod Q)?%).
a?—4b =0

() E : y?> = 23 + 622 — 2z, then E' : y? = 2% — 1222 + 44z, we calculate im g

1. O: ag(0) =1,
2. (0,0): @g(0,0) = —2 (mod(Q*)?).

Thus, |im ag| = 2. Then, we calculate im oy

1. O: ap/(0) =1,
2. (0,0): ap(0,0) = 44 = 11 (mod(Q*)?).

Thus, |im ag/| = 2. Then, we note that 2-descent gives

2rankE(Q) _ |1maE| : |imOKE/| _ 2x2 _
4 4

L,

So rank E(Q) = 0.

(i) E : y?> = 23 + 822 — Tz, then E' : % = 23 — 1622 + 922, we calculate im o

1. O: ag(0) =1,
2. (0,0): ag(0,0) = —7 (mod(Q*)?).
Thus, |imag| = 2. Then, we calculate im avgr similarly, | im agr| = 4. Then, we note that 2-descent
gives
orank E(Q) _ |imapgl|-|imag| _ 2 x4 _y
4 4 ’

Sorank E(Q) = 1.

(iii) B : y? = 23—322+10x, then £’ : y? = 234622 —31z, we calculate im ag: imagp C K(S,2),
where S = {p|b} = {2,5}, so the element in K (5,2) is £1,£2,+5, £10 and has size 8. We check
whether the square-free divisor b; of b is in im ag, that is, the equation w? = bju* + au?v? + by
has a solution on Q with b = 10/b;. The calculations show that there are solutions for all b, > 0
(i.e., 1,2,5,10), so imag = {1,2,5,10}, |imag| =?77. For E’, S’ = {p|b'} = {31}, the element
in K(5',2) is +1,+31, with a size of 4. Similarly, checking b} in imap/ reveals that all b} (i.e.,

1,—1,31, —31) have solutions, so imag = K(S5,2), |imag/| = 4. Then, we note that 2-descent
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gives
2rankE(Q) _ |1maE| : |1m()éE/| _ 4 x4 _
4 4

4,

Sorank F(Q) = 2.

(iv) E : y> = 23 — 377z, then E' : y?> = 23 4 1508z, we calculate imap: the element in
K(S,2)is +1,+13,+29, £377, of size 8, all b; have solutions, so imap = K (S, 2), of size 8. For F’,
S" = {plt'} = {2,13,29}, the element in K(S5',2) is +1,+2, +13, £26, £29, £58, £377, £754 and
has size 16. We can find that b} = 1, 13,29, 377 has a solution, and b} = 2,26, 58, 754 has no solution.
Therefore, im oy = {1, 13,29, 377} has a size of 4. Then, we note that 2-descent gives

orank B(Q) _ |imog| - | imag| _8x 4 _
4 4

8,

So rank E(Q) = 3. O

Exercise 4.4 Find the rank of 32> = 2® — p2x for p a prime with p = 3 (mod8).

Proof. Consider the elliptic curve E : y? = x> — p?z, whose 2-isogeny curve is E' : y?> = 23 + 4pz.

Define the homomorphism:

0

0p s B@ — Q@ P=@m i 7 (modQ¥)?).
—p? =0
T x#0

o B(Q) - Q /(@92 P = (a,) s 0 (mod @4)2)
4 =0

Obviously
AE :26'p67 AE’ = _212'p67

we can use the Lutz—Nagell theorem to find that the torsion points of E are (0,0), (+p,0), O, and the
torsion points of E’ are (0,0), O.
We calculate im ag:

1. O: ag(0)=1;

2. (0,0): @g(0,0) = —p? = —1 (mod(Q*)?);

3. (£p,0): ag(£p,0) = £p.
Thus, | im ag| = 4. Then, we calculate im avgr:

1. O: ap/(0) =1,

2. (0,0): g (0,0) = 4p? = 1 (mod(Q*)?).

Thus, |im ag/| = 1. Then, we note that 2-descent gives

grank £(Q) _ limop|-|imap| 4x1

1
4 4 ’

So rank F(Q) = 0. O
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Exercise 4.5 Let v(z) be the number of distinct prime factors of an integer z. Show that if

E/Q is an elliptic curve with Weierstrass equation y? = 23 + az? + bz with a,b € Z then
rank E(Q) < v (b) + v (a® — 4b) .

By considering real solubility, show that the inequality is strict. [This last part is easier if

a =0, so assume that if you like.]

Proof. (i) Consider the elliptic curve E : 3? = 2% + az? + bx, whose 2-isogeny curve is E : y? =

23 — 2ax? + (a® — 4b)z. Define the homomorphism:

0
0ps BQ) > Q)@ P—(@m) 4’ "7 (modQ¥)?).
b =0
0
o E'(Q) > Q</(Q%)2%, P=(z,y){ 770 (mod @¥)?).
a2 —4b =0

Notice imap C K (S,2) where S is all primes dividing b, and im «gr is similar. Then

. . 2_
limag| < 2VOF imag < 2vl@ -4+l

|limag| - |imag| <

= rank £(Q) = log, 1 < v(b) + v(a® — 4b).

(ii) In Exercise 4.3(iv), v(b) 4+ v(a?® — 4b) = 243 = 5, but rank = 3 < 5. Therefore, the inequality
holds strictly. O

Exercise 4.6 Let E be an elliptic curve over Q and let P € E(Q). Show that P is a torsion
point if and only if fz(P) = 0. [This gives another proof that the torsion subgroup is finite.]

Proof. We define the canonical height as:

h(P) = lim h(2"P)

n—00 g’

h(a/b,y) = logmax{]al, [b]}.

If P is a torsion point, then there exists a positive integer n such that nP = O,
0 = h(O) = h(nP) = n*h(P) = h(P) = 0.

If h(P) = 0, then for any n € Z, h(2"P) = 4"h(P) = 0, then

|h(2"P) — h(2"P)| <& = h(2"P) <e.

Clearly, {2" P |n > 0} is a finite set, so there exist distinct m, n such that 2™ P = 2" P, i.e., [2"—2"|P =

O, with P being a torsion point. O

Exercise 4.7 Show that if ¢ : E — E’ and ¢ : £/ — E" are isogenies defined over a number
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field K, then there is an exact sequence
E'(K) ] = SOE/K) - SY(E/K) - S (E'/K) .

Deduce from results proved in lectures that S(?)(E/K) is finite.

Proof. We change the notation S(%) to Sely. Consider the composition ¢ : E — E” is also an isogeny.

There is a canonical exact sequence of kernel groups
¢’ b
0 — El¢] — ElY¢] = E'[¢] — 0,

where ¢’ is inclution, ¢ : E[¢] — E'[] is surjective. Obviously we konw that HO(K, E[¢]) =
(E[¢])%%% = E(K)[4)], then this short exact sequence of Gal -modules induces a long exact sequence
in Galois cohomology H'(K, —) :== H*(Galg, —):

0 —— E(K)[¢] —— E(K)[yg] E'(K)[Y]
é

H(K, E[¢]) —5— H'(K, E[¢]) 5 H'(K, E'[y)).
By definition of the Selmer group
Sely(E/K) == {c € H'(K, E[§]) |tes,(c) € imk,, Yo € Xk} C H'(K, E[¢]),

notice that the restriction is a chain map of any complex, then Galois cohomology induces a commutative

diagram

B/(K)[y] —— H'(K,E[¢]) —— H'(K, E[¢]) —— H'(K, E'[y))

E'(Ky)[§] —— HY(Ky, E[¢]) —— H'(Ky, E[p¢]) —— H'(Ky, E'[¢])

thus we show the maps «, 3, d can be restrict to maps between Selmer groups.
From the cohomology sequence, ad = 0, thenim o C ker «. Conversely, if ¢ € keraNSely(E/K),
by exactness of the cohomology sequence, 3Q € E(K)[¢Y], ¢ = §(Q) € Sely(E/K), kera C imJd.

Similarly, ker 8 = im «.. Then the sequence
E'(K)[¢] — Sely(E/K) — Selyy(E/K) — Sely (E'/K)

is exact. O

Exercise 4.8 Let E be an elliptic curve over Q. Let K = Q(v/d) where d is a square-free
integer. The quadratic twist F; of I by d was defined in Question 7 on Example Sheet 1.
Show that there is a group homomorphism E(Q) x E4;(Q) — E(K) with finite kernel and
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cokernel. Deduce that
rank F(K) = rank E(Q) + rank E4(Q).

Proof. Pending. O

Exercise 4.9 Let E be an elliptic curve over C. Let w be an invariant differential on F.
Show that the map End(E) — C;¢ — ¢*w/w is an injective ring homomorphism. Use this
to check that the 2-isogenies ¢ and <$ (as defined in Question 1 and in lectures) are indeed

dual isogenies.

Proof. Pending. 0

Exercise 4.10 Let E£/Q be the elliptic curve y?> = x(x + 1) (x +4). (i) Compute the rank
and torsion subgroup of E(Q). [For the latter you may quote your answer from Question 2
on Example Sheet 3.] (ii) Show that if r,s,t € Q% with 72,52 1,¢? in arithmetic progression
then

(—2s%,2rst) € E(Q).

(iii) Deduce the result of Euler that there are no non-constant four term arithmetic progressions

of square numbers.

Proof. Pending. O

Exercise 4.11 Let E be an elliptic curve defined over a number field K with E[2] C E(K), say
y? = f(z) = (x — e1) (v — e2) (z — e3) with e1,e2,e3 € K. (i) Define a group homomorphism
0: E(K)— KX/(KX)2 X KX/(KX)2 with kernel 2E(K). Using your answer to Question 1,

or otherwise, show that it is given by

¢

(x—e1,x—e2) ifzFe e

(z,y) = (f'(e1),e1 —e2) ifzx=¢e

(e2 —e1, f'(e2)) ifx=e

(ii) Let £/Q be the elliptic curve y? = 22 — 2. Compute §(7T) for each T € E(Q)[2]. Show,
by adapting the proof in the first lecture, that these elements generate the image of 0.
Deduce that rank £(Q) = 0.

Proof. Pending. O
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