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1 Example Sheet 1

Exercise 1.1 Alter building Vadic priests in India knew by about 800BC how to construct
rational right-angled trianges with areas 6,15,21 and 210. Repeat their discovery.

Proof. Note that a2 + b2 = c2 corresponds to the Pythagorean array:

a = m2 − n2, b = 2mn, c = m2 + n2.

1. Takem = 2, n = 1, the triangle has sides (3, 4, 5), and the area is 6;

2. Take m = 4, n = 1 and then reduce the area by half, the triangle has sides
(
4,

15

2
,
17

2

)
, and the

area is 15;

3. Take m = 4, n = 3 and then reduce the area by half, the triangle has sides
(
7

2
, 12,

25

2

)
, and the

area is 21;
4. Takem = 5, n = 2, the side length of the triangle is (20, 21, 29), and the area is 210.

Exercise 1.2 Find rational parametrisations for the plane conic x2+xy+3y2 = 1 and for the
singular plane cubic y2 = x2(x+ 1).

Proof. For x2 + xy + 3y2 = 1, (−1, 0) is a solution. Substitute y = k(x+ 1) into x2 + xy + 3y2 = 1,
we have

(3k2 + k + 1)x2 + (6k2 + k)x+ (3k2 − 1) = 0,

by Vieta’s Theorem we know x = − 3k2 − 1

3k2 + k + 1
, thus y =

k(k + 2)

3k2 + k + 1
.

For y2 = x2(x+ 1), (0, 0) is a singularity. Reshaping the original equation yields
(y
x

)2
= x+ 1.

Taking t =
y

x
, we obtain t2 = x+1, x = t2−1. Substituting y = tx, we know y = t(t2−1). Therefore,

the rational parametrization of the curve is

x = t2 − 1, y = t(t2 − 1).
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Exercise 1.3 Consider the curve Cd =
{
Ud + V d =W d

}
⊂ P2 defined over Q.

(i) Find the points of inflection on C3, and then put this curve in Weierstrass form.
(ii) Let x, y ∈ Q (C4) be given by x =W 2/U2 and y = V 2W/U3. Show that y2 = x3 − x,

and hence find all the Q-rational points on C4.

Proof. (i) The inflection point makes the quadratic partial derivative of F (U, V,W ) = U3 + V 3 −W 3

be zero. Calculation yields FUU = 6U, FV V = 6V, FWW = −6W . Thus, the inflection point should
make UVW = 0.

1. If U = 0, then V 3 = W 3 ⇒ V = ζ3W , with inflection points at (0 : 1 : 1), (0 : ζ3 : 1),
(0 : ζ23 : 1);

2. If V = 0, then U3 = W 3 ⇒ U = ζ3W , with inflection points at (1 : 0 : 1), (ζ3 : 0 : 1),
(ζ23 : 0 : 1);

3. IfW = 0, then V 3 + U3 = 0 → U = −ζ3V , with inflection points at (1 : −1 : 0), (1 : −ζ3 : 0),
and (1 : −ζ23 : 0).

By transforming x =
12W

U + V
, y =

36(U − V )

U + V
, the curve becomes the standard Weierstrass form

y2 = x3 − 432.

(ii) We use the infinite descent method to demonstrate that x4 + y4 = (x2)2 + (y2)2 = z2 has no
positive integer solutions. If not, we assume that (x, y, z) is the z smallest positive integer solution. This
demonstrates that C4 has positive integer solutions only when z is odd, and x and y are both odd and
even. Let’s assume x is even, y and z are odd. Using the Pythagorean construction, we have:

x2 = 2mn, y2 = m2 − n2, z = m2 + n2.

Note that n2 + y2 = m2, which makes (n, y,m) form a new set of Pythagorean ratios. Verifying by
mod4, we know that n is even andm is odd. Again using the Pythagorean construction, we have:

n = 2pq, y = p2 − q2, m = p2 + q2.

Note thatm and n coprime, and p and q coprime. Therefore, we have p, q, andm = p2 + q2 coprime.
Substituting into the equation, we obtain x2 = 4pq(p2 + q2), which means that p, q, and m are all

squares, i.e.p = r2, q = s2, m = t2.
Substituting into m = p2 + q2, we find that r4 + s4 = t2, and (r, s, t) also forms a set of positive

integer solutions to the original equation. However, it is clear that t < z, which contradicts the assumption
that (x, y, z) is the z smallest positive integer solution. This also shows that C4 has no positive integer
solutions. The only rational points for y2 = x3 − x are (0, 0), (±1, 0), andO. Therefore, all the rational
points on C4 are

(1 : 0 : ±1), (0 : 1 : ±1).
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Exercise 1.4 Let K be an algebraically closed field with char(K) 6= 2. Let C be the projective
closure of the affine curve with equation y2 = f(x), where f(x) ∈ K[x]. Show that if
deg(f) = 3 then C is smooth if and only if f has distinct roots.

[Hint: It’s probably simplest to work with the affine equation, and then check the point
at infinity separately.] What happens if deg(f) > 3?

Proof. We set F (x, y) = y2 − f(x), and the affine curve is F (x, y) = 0. The partial derivatives are
Fx = −f ′(x), Fy = 2y. Solution

F (x, y) = 0, Fx(x, y) = 0, Fy(x, y) = 0

We obtainy = 0, f(x) = 0, f ′(x) = 0. Thus, the singularity occurs at the point (x, 0) where f(x) = 0

and f ′(x) = 0, meaning that f(x) has multiple roots. Conversely, if f(x) has three distinct roots, then
for any root x, f ′(x) 6= 0, so the affine curve is smooth.

Nowwe can check the infinity point. Let x =
X

Z
, y =

Y

Z
, note that deg f = 3, then homogenization

yields (
Y

Z

)2

= f

(
X

Z

)
=

1

Z3
g(X,Z),

where g(X,Z) is a homogeneous cubic polynomial. Thus, the projection curve is:

F (X,Y, Z) = ZY 2 − g(X,Z) = 0.

The point at infinity corresponds to Z = 0. Substituting this into 0 = g(X, 0) = aX3, we solve for the
point at infinity as (0 : 1 : 0). Computing the partial derivatives,

FX = −gX(X,Z), FY = 2Y Z, FZ = Y 2 − gZ(X,Z),

At the point (0 : 1 : 0), FX = 0, FY = 0, FZ = 1 6= 0, the gradient is non-zero, so the point is smooth.
If deg(f) = d > 3, the homogenized equation becomes

Y 2Zd−2 = g(X,Z)

where g(X,Z) is a homogeneous polynomial of degree d. In this case, the point at infinity may be a
singular point.

Exercise 1.5 Let E be the elliptic curve over Q defined by y2 + y = x3 − x. Draw a graph
of its real points. Let P = (0, 0). Compute nP for n = 2, 3, 4, 5, 6, 7, 8. What do you notice
about the denominators? Can you prove anything in this direction?

Proof. We can draw the draph as follows. Note that the curve is symmetric about y = −1

2
and that the

point (0, 0) lies on the curve. Given a point P = (0, 0), we differentiate the elliptic curve equation about

x to obtain y′ =
x3 − x

2y + 1
. Therefore, the tangent line at P is y = −x, which intersects E at (1,−1), and

2P = (1, 0).

3



Homework for Elliptic Curves Nicolas Keng

For Q = (x0, y0), calculate P + Q, the slope k =
y0
x0

, and P + Q = (k2 − x0, x0k − k3 − 1).
Substituting nP into the equations, we calculate

2P = (1, 0), 3P = (−1,−1), 4P = (2,−3), 6P = (6, 14),

5P =

(
1

4
,−5

8

)
, 7P =

(
−5

9
,
8

27

)
, 8P =

(
21

25
,− 69

125

)
.

1. the denominator of 2P, 3P, 4P, 6P are all integers;
2. the denominator of 5P is both powers of 2;
3. the denominator of 7P is both powers of 3;
4. the denominator of 8P is both powers of 5.

This actually reflects the following fact: Taking the modulo p reduction of the elliptic curve, the
order of E(Fp) annihilates P : modulo 2, the order is 5; modulo 3, the order is 7; and modulo 5, the order
is 8. Since n is now divisible by the order of P modulo p, the point nP is at infinity modulo p, and thus
the denominator is divisible by p.

We may can prove a general proposition: for a rational point P on an elliptic curve, the denominator
of a point nP is divisible by a prime number p if and only if, under the modulo p reduction, the order of
the point P is divisible by n. Specifically, if p is a good reduction, then the denominator of a point nP is
divisible by p if and only if n is a multiple of the order of the point P modulo p. In this problem,∆ = 37,
so all prime numbers other than 37 can appear in the denominator of nP as powers.

Exercise 1.6 Show that the congruent number elliptic curve Dy2 = x3 − x has Weierstrass
equation y2 = x3 −D2x. Now use the group law to find two rational right-angled triangles
of area 5.
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Proof. Consider Dy2 = x3 − x, multiply both sides by D3 and let u = Dx, v = D2y, we have that

v2 = u3 −D2u, i.e. y2 = x3 −D2x.

Let D = 5, then the curve is E25 : y2 = x3 − 25x, the rational points on this curve correspond to
rational right triangles with an area of   5. Noting that (1, 1) is a solution for mod 5, analysis shows that
P = (−4, 6) is a solution to E25. The calculated side lengths of the triangle are:(

3

2
,
20

3
,
41

6

)
.

Using the group law, the multiple of P = (−4, 6), 2P is calculated as we did before. The reuslt is

2P =

(
1681

144
, −62279

1728

)
. Similarly, the second triangle can be constructed as:

(
1519

492
,
4920

1519
,
3344161

747348

)
.

Exercise 1.7 Let E be an elliptic curve over Q with Weierstrass equation y2 = f(x).
(i) Put the curve Ed : dy2 = f(x) in Weierstrass form.
(ii) Show that if j(E) 6= 0, 1728 then every twist of E is isomorphic to Ed for some

unique square-free integer d. [A twist of E is an elliptic curve E′ defined over Q that is
isomorphic to E over Q. ]

Proof. (i) Let the Weierstrass equation for E be y2 = f(x) = x3 + Ax + B, and Ed be defined as
Ed : dy

2 = x3 +Ax+B. Let u = dx, v = d2y. Substituting, we have

d
( v
d2

)2
=

(u
d

)3
+A

(u
d

)
+B ⇒ v2

d3
=
u3

d3
+
Au

d
+B.

Multiplying both sides by d3, we obtain the Weierstrass equation for Ed as

y2 = x3 +Ad2x+Bd3.

(ii) Let the Weierstrass equation and the j-invariant of E be

y2 = x3 +Ax+B, j(E) = 1728 · 4A3

4A3 + 27B2
,

(GTM106, PropX.5.4) If j(E) 6= 0, 1728, then the automorphism group of E is {±1}, and all twists are
quadratic twists. We know that quadratic twists are parameterized by Q×/(Q×)2, and can be uniquely
represented by the square-free integer d as

Ed : y
2 = x3 +Ad2x+Bd3.
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Exercise 1.8 The elliptic curve Eλ over C with equation y2 = x (x− 1) (x− λ) has j-invariant

j =
28
(
λ2 − λ+ 1

)3
λ2(λ− 1)2

.

Find the complex numbers λ′ for which Eλ ∼= Eλ′.

Proof. Obviously two elliptic curves over C are isomorphic if and only if their j-invariants are equal.
Therefore, we only need to find all λ′ s.t. j(λ) = j(λ′).

E : y2 = x(x − 1)(x − λ) is symmetric curve under the permutation of the set {0, 1, λ}, these
permutations are given by S3, which corresponds to the following transformations:

• 0 7→ 0, 1 7→ 1, λ 7→ λ: x 7→ x;
• 0 7→ 0, 1 7→ λ, λ 7→ 1: x 7→ 1/x;
• 0 7→ 1, 1 7→ 0, λ 7→ λ: x 7→ 1− x;
• 0 7→ 1, 1 7→ λ, λ 7→ 0: x 7→ 1/(1− x);
• 0 7→ λ, 1 7→ 1, λ 7→ 0: x 7→ x/(x− 1);
• 0 7→ λ, 1 7→ 0, λ 7→ 1: x 7→ (x− 1)/x.

Thus,
λ′ = λ,

1

λ
, 1− λ,

1

1− λ
,

λ

λ− 1
,
λ− 1

λ
.

Exercise 1.9 (i) Find a formula for doubling a point on the elliptic curve E : y2 = x3+ax+ b.
[In your answer you should expand each numerator as a polynomial in x.]

(ii) Find a polynomial in x whose roots are the x-coordinates of the points T with
3T = OE. [Hint: Write 3T = OE as 2T = −T . ]

(iii) Show that the polynomial found in (ii) has distinct roots.

Proof. (i) For a point P = (x, y) on the elliptic curve E : y2 = x3 + ax + b , the tangent slope k is

k =
3x2 + a

2y
, then x′ and y′ are:

x′ = m2 − 2x, y′ = m(x− x′)− y.

By substituting and simplifying, we obtain the following explicit formula:

x′ =
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
, y′ =

x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2

8y(x3 + ax+ b)
.

(ii) Suppose T = (x, y), then −T = (x,−y). From the dot doubling formula,

x =
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
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Simplifying, we obtain
3x4 + 6ax2 + 12bx− a2 = 0.

Thus, the polynomial we are looking for is

P (x) = 3x4 + 6ax2 + 12bx− a2

(iii) Taking the derivative of P (x), P ′(x) = 12x3 +12ax+12b = 12(x3 + ax+ b). A polynomial
has multiple roots if and only if P (x) and P ′(x) have a common factor. Suppose there exists a linear
polynomial Q(x) = cx+ d s.t.

P (x) = (cx+ d)(x3 + ax+ b) = cx4 + dx3 + acx2 + (ad+ bc)x+ bd,

Comparing the coefficients with P (x) we find a = 0 and b = 0. In this case, the curve y2 = x3 is
singular, and the discriminant ∆ = −16(4a3 + 27b2) = 0, which is not an elliptic curve. Therefore,
P (x) and P ′(x) have no common factors, and P (x) has distinct roots.

Exercise 1.10 Let C be the plane cubic aX3+ bY 3+ cZ3 = 0 with a, b, c ∈ Q∗. Show that the
image of the morphism C → P3; (X : Y : Z) 7→

(
X3 : Y 3 : Z3 : XY Z

)
is an elliptic curve E,

and put E in Weierstrass form. [You should try to give an answer that is symmetric under
permuting a, b and c. ] What is the degree of the morphism from C to E?

Proof. Considering φ : C → P3, (X,Y, Z) 7→ (X3, Y 3, Z3, XY Z) = (U, V,W, T ). Calculate imφ

satisfies aU + bV + cW = 0, T 3 = UVW . We awnt to symmetrize the equation, we set T = 1, i.e. its
affine transformation, substitute

x = aU, y = bV, −x− y = cW

to the equation, yield

xy(x+ y) + abc = 0, i.e. y2 = x3 − 432(abc)2.

For a inverse image (X,Y, Z), if (X ′, Y ′, Z ′) 7→ (X3, Y 3, Z3, XY Z), then for 3rd unit root ω1,
ω2, ω3, we only need ω1ω2ω3 = 1, degφ = 3.

Exercise 1.11 Let E/F2 be the elliptic curve y2 + y = x3. Show that the group Aut(E)

of auto-morphisms of E is a non-abelian group of order 24. [An automorphism of E is
an isomorphism from E to itself. In this example all the automorphisms are defined over
F4 = F2 (ω) where ω2 + ω + 1 = 0.

]
Proof. (i) Each automorphism has the form

f : E → E, (x, y) 7→ (u2x+ r, u3y + su2x+ t), u, r, s, t ∈ F4,
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substitute that coordinate transformtion into the curve equation and simplify it, we need

u3 = 1 i.e. u ∈ {1, ω, ω2}, r = s2, t2 + t = r3.

• if s = 0, then r = 0, t2 + t = 1, t = 0 or 1;
• if s 6= 0, then s3 = 1, r3 = s6 = 1, t2 + t = 1, t = ω or ω2, r = 1 or ω or ω2, s2 = r;

Hence, |Aut(E)| = 3× 2 + 3× 3× 2 = 24.
(ii) Non-Abelian: let

φ1 : (x, y) 7→ (ω2x+ 1, ωy + ωx+ ω); φ2 : (x, y) 7→ (ω2x, ω2y).

Calculate that

φ1 ◦ φ2(x, y) = (ωx+ 1, ωy + ωx+ ω) 6= (ωx+ ω2, ωy + ω2x+ ω2) = φ2 ◦ φ1(x, y),

φ1 ◦ φ2 6= φ2 ◦ φ1, Aut(E) is non-Abelian group.

Exercise 1.12 Let C ⊂ P2 be a smooth plane cubic defined over Q. Show that if C(K) 6= ∅
for K/Q a quadratic field extension then C(Q) 6= ∅. Can you generalise this result to field
extensions of degree n for other integers n?

Proof. (i) If ∀P ∈ C(K), P /∈ Q, let Gal(K/Q) = {1, σ}. Then σ(P ) ∈ C(K). Considering the line
` passing through P and σ(P ), since ` determind by P and σ(P ), then σ(`) = `, i.e. ` defined over
Q. Hence, we note the third point of ` intersects with C as Q, both ` and C are defined over Q, then
Q ∈ C(Q). C(Q) 6= 0.

(ii) It’s wrong. Consider
C/Q : x3 + 2y3 + 4z3 = 0.

We have C(Q) = ∅, but on the cubic expansionQ( 3
√
2) there is a rational point P = (0 : 3

√
2 : −1).
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2 Example Sheet 2

Exercise 2.1 Find all points defined over the field F13 of 13 elements on the elliptic curve

y2 = x3 + x+ 5,

and show that they form a cyclic group. Find an example of an elliptic curve over F13 for
which this group is not cyclic. Are there any examples where the group requires more than
two generators?

Proof. (i) Notice the quadratic residue of F13 is {1, 3, 4, 9, 10, 12}.

• x = 0: y2 = 5, non-quadratic residue, no points.
• x = 1: y2 = 7, non-quadratic residue, no points.
• x = 2: y2 = 15, non-quadratic residue, no points.
• · · · · · · · · · · · ·

We can find all finite points are (3, 3), (3, 10), (7, 2), (7, 11), (10, 1), (10, 12), (12, 4), and (12, 9), for a
total of 8 points. Including the point O at infinity, the total number of points is 9.

Now prove that these points form a cyclic group. Compute the multiples of the point P = (3, 3):
2P = (10, 12), 3P = (12, 4), 4P = (7, 11), 5P = (7, 2), 6P = (12, 9), 7P = (10, 1), 8P = (3, 10),
9P = O. Thus, the point P has order 9 and generates the F13-rational point group, so the group is cyclic.

(ii) Consider the elliptic curveE′ : y2 = x3+1 over F13. We calculate (0, 1), (0, 12), (2, 3), (2, 10),
(4, 0), (5, 3), (5, 10), (6, 3), (6, 10), (10, 0), (12, 0), and OE′ , for total 12 points. The computation of
E′(F13) is isomorphic to Z/2Z× Z/6Z, not cyclic.

(iii) We now prove that there are integers m ≥ 1 and n ≥ 1 with gcd(m, q) = 1, s.t. E(Fq) =

Z/mZ× Z/mnZ. At first, by GTM106, CorIII.6.4, we know that when charF = p,

• if gcd(p,m) = 1, then E[m] ∼= (Z/mZ)2;
• ifm = pe, then ∀e ∈ Z≥1, E[pe] = {OE} or E[pe] ∼= Z/peZ.

Then the rank of E[m] ≤ 2 for allm ∈ Fq. If rankE(Fq) ≥ 3, by the structure of finite Abel group, we
set

E(Fq) ∼= Z/n1Z× Z/n2Z× Z/n3Z× · · · × Z/nrZ, n3 6= 0, ni|ni+1.

Thus, for d|n3, E[d] = (Z/dZ)sd , s ≤ 2. In the structural decomposition, each Z/nrZ corresponds to a
Z/dZ; but ni|ni+1, d ∤ n1 for all factors d of n3, n1 = 0. Recursively, we can get E(Fq) to have at most
two components, E(Fq) = Z/mZ× Z/mnZ, thus E(Fq) has at most 2 generators.

Exercise 2.2 Let A be an abelian group. Let q : A→ Z be a map satisfying

q (x+ y) + q (x− y) = 2q(x) + 2q (y)

for all x, y ∈ A. Show that q is a quadratic form.

Proof. Taking y = 0, we have q(x) + q(x) = 2q(x) + 2q(0), q(0) = 0. Taking x = 0, q(y) + q(−y) =
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2q(0) + 2q(y) = 2q(y), q(−y) = q(y). Taking y = x, q(2x) + q(0) = 2q(x) + 2q(x) = 4q(x). By
induction, we obtain that for any n ∈ Z, q(nx) = n2q(x).

We define
B : A×A→ Z, B(x, y) =

q(x+ y)− q(x)− q(y)

2
∈ Z,

Verify

1. Symmetry: B(y, x) =
q(x+ y)− q(x)− q(y)

2
= B(x, y);

2. Bilinearity: B(x+ y, z) = B(x, z) +B(y, z),

Thus, B is a symmetric bilinear form. Note that q(x) = B(x, x), so q is a quadratic form.

Exercise 2.3 Find a translation-invariant differential ω on the multiplicative group Gm. Show
that if [n] : Gm → Gm is the endomorphism x 7→ xn, then [n]∗ω = nω.

Proof. ω =
dx
x
. For the multiplication group Gm, we consider the translation T : x 7→ ax, then

T ∗ω =
d(ax)
ax

=
dx
x

= ω. Thus, ω is translation-invariant. Now consider [n] : x 7→ xn, calculate

[n]∗ω = [n]∗
dx
x

=
dxn

xn
=
nxn−1 dx
xn−1 · x

= nω.

Exercise 2.4 Let E1 and E2 be elliptic curves over Fq, and let ψ : E1 → E2 be an isogeny
defined over Fq. Let φi be the q-power Frobenius on Ei for i = 1, 2. Show that ψ◦φ1 = φ2◦ψ
and deduce that #E1 (Fq) = #E2 (Fq).

Proof. (i) For i = 1, 2, define the q-power Frobenius φi : Ei → Ei, P = (x, y) 7→ P q = (xq, yq).
Therefore, ∀P ∈ E1,

ψ(φ1(P )) = ψ(P q) = (ψ(P ))q = φ2(ψ(P )), ψ ◦ φ1 = φ2 ◦ ψ.

(ii) Rational points |Ei(Fq)| = deg(1− φi). Obviously

ψ ◦ φ1 = φ2 ◦ ψ ⇒ ψ ◦ (1− φ1) = (1− φ2) ◦ ψ,

then degψ ·deg(1−φ1) = deg(1−φ2)·degψ, i.e. deg(1−φ1) = deg(1−φ2), |E1(Fq)| = |E2(Fq)|.

Exercise 2.5 Let E/F13 be the elliptic curve in Exercise 2.1. Without listing its elements,
find the order of E (F132) and determine whether this group is cyclic.

Proof. We can calculate the trace

tr Frob = a = q + 1− |E(F13)| = 13 + 1− 9 = 5.

10
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Let α, β be two roots of the equation X2 − 5X + 13 = 0. We know that

|E(F132)| = 132 + 1− α2 − β2 = 170− 5(α+ β) + 26 = 170− 25 + 26 = 171.

We have proved there are integers m ≥ 1 and n ≥ 1 with gcd(m, q) = 1, s.t. E(Fq) = Z/mZ ×
Z/mnZ in Exercise 2.1, 171 = 32 · 19, then

E(F132) ∼= Z/171Z, or E(F132) ∼= Z/3Z× Z/57Z.

Note that E(F13) is subgroup of E(F132), |E(F13)| = 9 and E(F13) is cyclic, then the g.c.d of the order
of all points must be divisible by 9, which implies E(F132) ∼= Z/171Z, i.e. cyclic.

Exercise 2.6 Show that if φ ∈ End(E) then there exists tr(φ) ∈ Z s.t.

deg ([n] + φ) = n2 + n tr(φ) + deg(φ)

for all n ∈ Z. Establish the following properties:
(i) tr (φ+ ψ) = tr(φ) + tr(ψ),
(ii) tr

(
φ2

)
= tr (φ)2 − 2 deg(φ),

(iii) φ2 − [tr(φ)]φ+ [deg(φ)] = 0.

Proof. We know that the degree mapping deg : End(E) → Z, f 7→ deg f is positive definite quadratic
form, then exists a bilinear from q(−,−), s.t.

∀φ, ψ ∈ End(E), deg(φ+ ψ) = degφ+ degψ + q(φ, ψ).

We can define the trace trφ := q(1, φ), where 1 = id ∈ End(E). Thus,

deg([n] + φ) = deg[n] + degφ+ q([n], φ) = n2 + degφ+ n · trφ.

We now establish these properties:
(i) tr(φ+ ψ) = q(1, φ+ ψ) = q(1, φ) + q(1, ψ) = degφ+ degψ.
(ii) We can take traces in the results in (iii):

tr(φ2) = tr([tr(φ)]φ− [degφ]) = tr(φ) · tr(φ)− tr([degφ]).

obviously tr([m]) = 2m, in particular, tr([degφ]) = 2 degφ. Therefore,

tr(φ2) = (trφ)2 − 2 degφ.

(iii) Let φ̂ be the dual isogeny of φ, then φφ̂ = [degφ], note that φ+ φ̂ is self-dual, hence there exists
an integerm s.t. φ+ φ̂ = [m]. Note that

deg(1 + φ) = deg 1 + degφ+ q(1, φ) = 1 + degφ+ tr(φ),

11
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using the dual and taking degrees, we have that

(1+φ)(1+ φ̂) = 1+φ+ φ̂+φφ̂ = 1+[m]+[degφ], deg(1+φ) ·deg(1+ φ̂) = deg(1+[m]+[degφ]).

But deg(1 + φ̂) = deg(1 + φ) since degφ = deg φ̂, thus,

(1 + degφ+ tr(φ))2 = (1 +m+ degφ)2 ⇒ tr(φ) = m.

Therefore, φ+ φ̂ = [tr(φ)], φ̂ = [tr(φ)]− φ. Now multiply both sides by φ:

[degφ] = φφ̂ = φ([tr(φ)]− φ) = [tr(φ)]φ− φ2 ⇒ φ2 − [tr(φ)]φ+ [degφ] = 0.

Exercise 2.7 Let E be the elliptic curve y2 = x3 + d. We put

ξ =
x3 + 4d

x2
, η =

y
(
x3 − 8d

)
x3

.

(i) Show that T =
(
0,
√
d
)

is a point of order 3, and that if P = (x, y) then

ξ = x(P ) + x (P + T ) + x (P + 2T ) .

(ii) Verify that η2 = ξ3 +D for some constant D (which you should find).
(iii) Let E′ be the elliptic curve y2 = x3 + D, and φ : E → E′ the isogeny given by

(x, y) 7→ (ξ, η). Compute φ∗ (dx/y).

Proof. (i) Calculatic 2T : k =
3x2

2y
= 0, tangent line ` : y =

√
d, −2T = T i.e. 3T = 0, T is a point

with order 3. Let P = (x, y),

• calculate P + T : k1 =
y −

√
d

x
, x(P ) + x(T ) + x(P + T ) = k21;

• calculate P + 2T = P − T : k2 =
y +

√
d

x
, x(P ) + x(2T ) + x(P + 2T ) = k22 .

Therefore,

x(P ) + x(P + T ) + x(P + 2T ) = k21 + k22 − x(P )− 2x(T )

=
(y −

√
d)

2

x2
+

(y +
√
d)

2

x2
− x

=
2y2 + 2d− x3

x2
=

2(x3 + d) + 2d− x3

x2
=
x3 + 4d

x2
= ξ.

(ii)D = η2 − ξ3 =
y2(x3 − 8d)

2

x6
− (x3 + 4d)

3

x6

=
(x3 + d)(x3 − 8d)

2 − (x3 + 4d)
3

x6
=

−27dx6

x6
= −27d.

12
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(iii) dξ = d
(
x3 + 4d

x2

)
=
x3 − 8d

x3
dx. Then φ∗

dx
y

=
dξ
η

=
x3−8d
x3

dx
y(x3−8d)

x3

=
dx
y
.

Exercise 2.8 Let E/Fq be an elliptic curve and K = Fq(E). Show that ζK is meromorphic
on C and satisfies the functional equation ζK (1− s) = ζK (s).

Proof.
ζK(s) =

∏
p∈ΣK

(1− N (p)−s)
−1

=
∏

p∈ΣK

(1− q−s·deg p)
−1
.

Thus, ζK(s) is defined as the value of the elliptic curve zeta function at T = q−s, that is ζK(s) =

ZK(q−s), where ZK(T ) =
1− aT + qT 2

(1− T )(1− qT )
, a = q + 1− |E(Fq)|.

(i) Note that ZK(X) is rational function of X , X = q−s is integral function, then the composition
ζK(s) = ZK(q−s) is meromorphic on C.

(ii) Note that for elliptic curves, we have

ZK

(
1

qT

)
= ZK(T ),

Let T = q−s, and we can compute ζK(1− s):

ζK(1− s) = ZK(q−(1−s)) = ZK(qs−1).

We can also compute ζK(s):

ζK(s) = ZK(q−s) = ZK(T ) = ZK

(
1

qT

)
= ZK(qs−1).

Thus, ζK(1− s) = ζK(s), and the functional equation holds.

Exercise 2.9 Let E/Fp be an elliptic curve with p an odd prime. Show that there exists an
elliptic curve E′/Fp with

#E(Fp) + #E′(Fp) = 2 (p+ 1) .

Show further that the groups E(Fp) × E′(Fp) and E
(
Fp2

)
have the same order, but need

not be isomorphic.

Proof. Let the elliptic curve E : y2 = f(x), where f(x) is a cubic polynomial. Let d ∈ Fp be a
non-square element, and defineE′ : dy2 = f(x) as a quadratic twist ofE. For any x ∈ Fp, the Legendre

symbol
(
f(x)

p

)
of f(x) takes the value 0, 1,−1.

1. If f(x) = 0, then both E and E′ have a point (x, 0).

2. If
(
f(x)

p

)
= 1, then E has two points and E′ has no points.

3. If
(
f(x)

p

)
= −1, then E has no points and E′ has two points.

13
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In addition, every curve has a point O at infinity. therefore,

|E(Fp)| = 1 +
∑
x∈Fp

(
1 +

(
f(x)

p

))
= p+ 1 +

∑
x∈Fp

(
f(x)

p

)
,

|E′(Fp)| = 1 +
∑
x∈Fp

(
1 +

(
df(x)

p

))
= p+ 1−

∑
x∈Fp

(
f(x)

p

)
.

Thus, |E(Fp)|+ |E′(Fp)| = 2(p+ 1).
(ii) Let |E(Fp)| = p+ 1− a, then |E′(Fp)| = p+ 1 + a,

|E(Fp)× E′(Fp)| = (p+ 1− a)(p+ 1 + a) = (p+ 1)2 − a2.

On the other hand, note that on Fp2 , Frobp2 = Frob2p, and its eigenvalue is α2, β2, where α, β is a root
of the characteristic polynomial T 2 − aT + p of Frobp on E. Therefore, by Vieta’s theorem and Weil’s
conjecture,

|E(Fp2)| = 1− (α2 + β2) + α2β2 = 1− (a2 − 2p) + p2 = (p+ 1)2 − a2.

Thus, |E(Fp)× E′(Fp)| = |E(Fp2)|.
(iii) Taking p = 13, the elliptic curves in Exercises 2.1 and 2.5 satisfy the above result.

Exercise 2.10 Let E be an elliptic curve over Fp (p a prime) with #E(Fp) = p + 1 − a, and
let φ : E → E be the p-power Frobenius, i.e. φ : (x, y) 7→ (xp, yp). Let ψ = [a]− φ. (i) Show
that φ ◦ ψ = ψ ◦ φ = [p]. (ii) Show that if ψ is separable then E [pr] ∼= Z/prZ for all r ≥ 1.
(iii) Show that if p ≥ 5 and E [p] = 0 then #E(Fp) = p+ 1.

Proof. (i) The Frobenius endomorphism φ satisfies the characteristic equation φ2 − aφ+ [p] = 0, where
a = p+ 1− |E(Fp)|. Then

φ ◦ ψ = φ([a]− φ) = [a]φ− φ2 = [a]φ− (aφ− [p]) = [p].

Similarly,
ψ ◦ φ = ([a]− φ)φ = [a]φ− φ2 = [a]φ− (aφ− [p]) = [p].

Thus, φ ◦ ψ = ψ ◦ φ = [p].
(ii) Note that ψ = [a]− φ is essentially the dual Frobenius φ̂, degψ = p. If ψ is separable, then its

kernel is of size p. From φ ◦ ψ = [p], we know that kerψ ⊆ E[p], so E[p] contains a subgroup of order
p, so E[p] ∼= Z/pZ. Furthermore, when ψ is separable, the formal group has height 1, which means that
for any r ≥ 1, we have E[pr] ∼= Z/prZ.

(iii) If E[p] = 0, then the characteristic polynomial of the Frobenius φ is T 2 − aT + p, and a ≡
0 (mod p), that is, a = kp for some integer k. From the Hasse bound |a| ≤ 2

√
p, substituting a = kp

yields
|k| ≤ 2

√
p
< 1, (p ≥ 5).

14
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Thus, k = 0, that is, a = 0, |E(Fp)| = p+ 1− a = p+ 1.

Exercise 2.11 Let F ∈ R [[X,Y ]] be a formal group over a ring R. Show that there is a unique
power series ι(T ) in RJT K with ι (0) = 0 and F (T, ι(T )) = 0. Find ι(T ) for the multiplicative
formal group “Gm.

Proof. (i) Assume the formal group law

F (X,Y ) = X + Y +
∑
i,j≥1

aijX
iY j ∈ R[[X,Y ]]

Satisfies
F (X, 0) = X, F (0, Y ) = Y, F (X,Y ) ≡ X + Y (mod deg 2) ,

Expand F (T, ι(T )) = 0, and substitute the comparison coefficients to obtain

ι(T ) = −T −
∑
i,j≥1

aijT
i(ι(T ))j ,

Assume ι(T ) =

∞∑
i=1

ciT
i, substitute the above equation and compare the coefficients to obtain c1 =

−1, cn is determined recursively by the coefficients of the lower-order terms. Furthermore, expanding
F (X, ι(0)) and comparing the coefficients with F (X, 0) = X yields

F (X, 0) ≡ X (mod deg 3) ⇒ F (X,Y ) ≡ X + Y + g ·XY (mod deg 3) .

Thus, there exists a unique power series ι(T ) such that ι(0) = 0 and F (T, ι(T )) = 0.
(ii) The multiplicative formal group “Gm is defined as F (X,Y ) = X + Y +XY , requiring ι(T ) to

satisfy:
F (T, ι(T )) = T + ι(T ) + T · ι(T ) = 0 ⇒ ι(T )(1 + T ) = −T,

i.e. ι(T ) = − T

1 + T
.

Exercise 2.12 Let R be an integral domain of characteristic zero, with field of fractions
K. Suppose that f(T ) =

∞∑
n=1

(an/n!)T
n and g(T ) =

∞∑
n=1

(bn/n!)T
n are power series in KJT K

satisfying f (g(T )) = g (f(T )) = T . Show that if a1 ∈ R× and an ∈ R for all n, then bn ∈ R

for all n. [Hint: You should repeatedly differentiate f (g(T )) = T and then put T = 0. ]

Proof. From f(g(T )) = T , taking the derivative of both sides with respect to T , we obtain f ′(g(T )) ·
g′(T ) = 1. Substituting into T = 0,

f ′(0) · g′(0) = a1b1 = 1 ⇒ b1 =
1

a1
.

We know that a1 ∈ R×, so b1 ∈ R.
Next, we prove bn ∈ R by induction for n. Assume that for all j < n, we have bj ∈ R. Consider

15
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the nth derivative of f(g(T )) = T at T = 0. From Faà di Bruno’s formula:

dn

dTn
f(g(T )) =

n∑
k=1

f (k)(g(T )) ·Bn,k(g′(T ), g′′(T ), . . . , g(n−k+1)(T )),

where Bn,k is a Bell polynomial. So at T = 0, we have

g(0) = 0 ⇒ f (k)(0) = ak, g(j)(0) = bj .

Thus:
n∑
k=1

ak ·Bn,k(b1, b2, . . . , bn−k+1) = 0.

Separating the k = 1 term, noting thatBn,1(b1, . . . , bn) = bn andBn,k is a polynomial in b1, . . . , bn−k+1,
the above summation becomes:

a1bn +
n∑
k=2

ak ·Bn,k(b1, . . . , bn−k+1) = 0, i.e. bn = − 1

a1

n∑
k=2

ak ·Bn,k(b1, . . . , bn−k+1).

By the induction hypothesis, b1, . . . , bn−1 ∈ R, a1 ∈ R×, so bn ∈ R. We complete the proof by
mathematical induction.

16
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3 Example Sheet 3

Exercise 3.1 Let E be the elliptic curve over Q given by

y2 + xy = x3 − 2x+ 1

for which the discriminant ∆ is equal to -61. For each prime p, let Ẽp be the reduction of
E modulo p.

(i) Compute the cardinality of Ẽp(Fp) for p = 2, 3, 5, 7.
(ii) Prove that the torsion subgroup of E(Q) is trivial.
(iii) Prove that the torsion subgroup of E (Q2) has order dividing 8.
(iv) If P = (1, 0) in E(Q), prove that 7P and 9P do not have integral coordinates.

Proof. (i) For p = 2, 3, 5, 7, we can calculate as follows:

• p = 2, Ẽ2/F2 : y
2 + xy = x3 + 1, Ẽ2(F2) = {(0, 1), (1, 0), (1, 1), O}, 4 points;

• p = 3, Ẽ3/F3 : y
2 + xy = x3 + x+1, Ẽ3(F3) = {(0, 1), (0, 2), (1, 0), (1, 2), (2, 2), O}, 6 points;

• p = 5, Ẽ5(F5) = {(0, 1), (0, 4), (1, 0), (1, 4), (2, 0), (2, 3), (4, 2), (4, 4), O}, 9 points;
• p = 7, Ẽ7(F7) = {(0, 1), (0, 6), (1, 0), (1, 6), (6, 2), (6, 6), O}, 7 points.

(ii) We konw that E(Q)tor injects into all of these groups in (i), note that gcd(4, 6, 9, 7) = 1. Hence
|E(Q)tor| = 1.

(iii) Note that 2 ∤ ∆E = −61, then E has good reduction on p = 2. Thus, E(Q2) ↪→ Ẽ2(F2). We
konw |Ẽ2(F2)| = 4 in (i), then E(Q2)tor has order dividing 4, furthermore, 8.

(iv) Note that points with integer coordinates will not be at infinity after reduction modulo ∀p. For
7P : Reduced modulo p = 7, Ẽ7(F7) is a cyclic group. The point P modulo 7 is (1, 0) ∈ Ẽ7(F7), and
the order of P in Ẽ7(F7) is 7. Therefore, 7P ≡ O (mod 7), so 7P has no integer coordinates. For
9P : Reduced modulo p = 5, the order of Ẽ5(F5) is 9. The point P modulo 5 is (1, 0) ∈ Ẽ5(F5), and
the order of P in Ẽ5(F5) is integer divisible by 9. Therefore, 9P ≡ O (mod 5), so 9P has no integer
coordinates.

Exercise 3.2 Find the torsion groups over Q for the elliptic curves (i) y2 + xy + y = x3, (ii)
y2 − xy − 4y = x3 − 4x2, (iii) y2 = x3 + 5x2 + 4x.

Proof. We’ll use Lutz–Nagell theorem: if (x, y) ∈ E(Q)tor, y2 = x3 + ax2 + bx+ c, then (x, y) ∈ Z2,
y = 0 or y2|∆.

(i) The substitution y 7→ 1

2
(y − x− 1) gives us an Weierstrass of the form

E′ : y2 = 4x3 + x2 + 2x+ 1, ∆ = −26.

By Lutz–Nagell theorem, if (x, y) ∈ E(Q)tor, then

• y = 0: let P = (0, 0), then 2P = (0,−1), 3P = O;
• y2|∆: impossible.

17
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Thus, the torsion group is Z/3Z.
(ii) The substitution y 7→ 1

2
(y + x+ 4) gives us a Weierstrass form of the form

E′ : y2 = 4x3 − 15x2 + 8x+ 16, ∆ = −1664 = −27 · 13.

By Lutz–Nagell theorem, if (x, y) ∈ E(Q)tor, then

• y = 0: let P = (0, 0), then 2P = (4, 8), 3P = (2, 2), 4P = (2, 4), 5P = (4, 0), 6P = (−1,−1),
7P = O;

• y2 | ∆: no other points.

Thus, the torsion group is Z/7Z.
(iii) E : y2 = x3 + 5x2 + 4x, ∆ = 2304 = 28 · 32. By Lutz–Nagell theorem, if (x, y) ∈ E(Q)tor,

then

• y = 0: points (0, 0), (−1, 0), (−4, 0);
• y2 | ∆: points (−2,±2), (2,±6).

We can calculate (−1, 0) has order 2, (2, 6) has order 4. Thus, the torsion group is Z/2Z⊕ Z/4Z.

Exercise 3.3 Let E/Q be the elliptic curve y2 = x3+λx where λ is an integer. For p a prime
not dividing 2λ we write #Ẽ(Fp) = p+ 1− ap. Show that if p = 4k + 1 then

ap ≡ λk
(
2k

k

)
(mod p) .

Deduce that ap ≡ 0 (mod p) if and only if p ≡ 3 (mod 4).

Proof. (i) Consider the elliptic curve E : y2 = x3 + λx over the finite field Fp, then

|E(Fp)| = 1 +

p−1∑
x=0

(
1 +

(
x3 + λx

p

))
= p+ 1 +

p−1∑
x=0

(
x3 + λx

p

)
,

where
(
·
p

)
is the Legendre symbol. From |E(Fp)| = p+ 1− ap, we can deduce

ap = −
p−1∑
x=0

(
x3 + λx

p

)
.

For x = 0, we have
(
0

p

)
= 0. For x 6= 0, we have:

(
x3 + λx

p

)
=

(
x

p

)(
x2 + λ

p

)
.

By Euler’s criterion, the Legendre symbol satisfies
(
a

p

)
≡ a(p−1)/2 (mod p) for a 6≡ 0 (mod p). Since

18
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p = 4k + 1, we have

(
x

p

)
≡ x2k (mod p) ,

(
x2 + λ

p

)
≡ (x2 + λ)2k (mod p) , ap ≡ −

p−1∑
x=1

x2k(x2 + λ)2k (mod p) .

By the binomial theorem, we can expand (x2 + λ)2k to the form

(x2 + λ)2k =
2k∑
j=0

(
2k

j

)
λjx4k−2j ,

Thus:

ap ≡ −
p−1∑
x=1

x2k
2k∑
j=0

(
2k

j

)
λjx4k−2j = −

2k∑
j=0

(
2k

j

)
λj

p−1∑
x=1

x6k−2j (mod p) .

Consider m = 6k − 2j. By Fermat’s Little Theorem,
∑p−1

x=1 x
m ≡ 0 (mod p) when p − 1 = 4k ∤ m.

Therefore, the nonzero terms satisfy 4k | m, i.e., 2k | (3k − j). Since 0 ≤ j ≤ 2k, then j = k. At this
time, x4k = xp−1 ≡ 1 (mod p) for x = 1, · · · , p− 1, so

ap ≡ −
(
2k

k

)
λk

p−1∑
x=1

x4k ≡ −
(
2k

k

)
λk · (−1) = λk

(
2k

k

)
(mod p) .

(2). First, if p = 4k + 1, from (i) we have

ap ≡ λk
(
2k

k

)
6≡ 0 (mod p) .

Take p = 4k + 3, note that
(
−1

p

)
= −1,

(
0

p

)
= 0and

(
(−x)3 + λ(−x)

p

)
=

(
−x3 − λx

p

)
=

(
−1

p

)(
x3 + λx

p

)
,

From symmetry we obviously have

2ap = −
p−1∑
x=1

((
x3 + λx

p

)
+

(
−1

p

)(
x3 + λx

p

))
= 0,

Thus, ap = 0, i.e., ap ≡ 0 (mod p).

Exercise 3.4 (i) Prove that the torsion subgroup of the group of Q-points on the elliptic
curve y2 = x3 + d has order dividing 6. (ii) Show that the elliptic curve y2 = x3 + 5 has
infinitely many Q-points.

Proof. (i) Pending.
(ii) Take a point P = (−1, 2) ∈ E(Q). If P is a torsion point, then from (i) we know that its order
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is divisible by 6. However, calculating 2P yields

2P =

(
41

16
, −299

64

)
The coordinates are non-integer. However, according to the Lutz–Nagell theorem, the coordinates of the
torsion points must be integers, a contradiction. Therefore, P is an infinite-order point, and thus E(Q)

has infinite points.

Exercise 3.5 Show that if E has Weierstrass equation

y2 = x3 + ax2 + bx

with a, b ∈ Z and P = (x, y) ∈ E(Q) is a point of finite order, then either x = 0 or x divides
b and x+ a+ b/x is a perfect square. [Thinking about how the proof of Lutz–Nagell works
might help you find a short proof.]

Proof. Similar to the proof of Lutz–Nagell theorem, set Q = (0, 0), note that 2Q = O, Q is a 2-torsion
point. If P = (x, y) ∈ E(Q)tor is a torsion point, then P +Q is also. Calculate kPQ = y/x,

x(P +Q) = k2 − a− x =
(y
x

)2
− a− x =

x3 + ax2 + bx

x2
− a− x =

b

x
.

If x = 0, then P = (0, 0) = Q ∈ E(Q)tor. If x 6= 0, P + Q is also a torsion point, by Lutz–Nagell
theorem, x(P + Q) = b/x ∈ Z, x|b. At that time, (y/x)2 = x + a + b/x ∈ Z, i.e. x + a + b/x is a
square.

Exercise 3.6 Let p ≥ 5 be a prime, and let K be a finite extension of Qp. Show that every
elliptic curve E/Qp has a minimal Weierstrass equation of the form y2 = x3 + ax + b with
a, b ∈ Zp. What are the conditions on vp (a) and vp (b) for this to be a minimal Weierstrass
equation? Show that if E/Qp has good reduction then E/K has good reduction? Is the
corresponding statement true if we replace ”good” by ”multiplicative”? What about the
additive case?

Proof. (i) Existence ofminimalWeierstrass equation: notice p 6= 2, 3, thenwe can simplify theWeierstrass
equation into the form y2 = x3 + ax + b, a, b ∈ Qp through coordinate transformation. We can adjust
a, b s.t. a, b ∈ Zp by scaling

x 7→ u2x, y 7→ u3y, u ∈ Q×
p ⇒ a′ = u4a, b′ = u6b, ∆′ = u12∆.

We can choose one of that minimizes the p-adic valuation of∆.
(ii) Let x 7→ u−2x, y 7→ u−3y, then a′ = u−4a ∈ Zp, i.e. vp(a) − 4vp(u) ≥ 0. Similarly,

vp(b)− 6vp(u) ≥ 0, vp(∆′) = vp(∆)− 12vp(u). Set vp(u) = k ≥ 1, notice the vp(∆′) is minimal, then
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that scaling must be the finally type, i.e.

vp(a) < 4 or vp(b) < 6, vp(a), vp(b) ∈ Z.

(iii) If E/Qp has good reduction, then exists a minimal Weierstrass equation s.t. vp(∆) = 0. For
any finite extension K/Qp, note v′ as the extension of v, then v′(∆) = evp(∆) = 0, where e is the
ramification index. Thus, E/K has a good reduction.

(iv) Multiplicative reduction and additive reduction:???

Exercise 3.7 Let K be a field of characteristic not 2. Let E/K be the curve defined by
the singular Weierstrass equation y2 = x2 (x+ 1). Find a rational parametrisation t 7→
(φ (t) , ψ (t)) with t = 0,∞ mapping to the singular point and t = 1 mapping to the point at
infinity. Use this to show that Ens(K) ∼= K×. [For the last part, try to find a method similar
to the one used in lectures in the additive case.]

Proof. (i) The curve is singular at point (0, 0). We set y = kx substitute into the equation:

(kx)2 = x2(x+ 1), x = k2 − 1, y = kx = k(k2 − 1).

This parametrization (x, y) 7→ (α(k), β(k)) = (k2 − 1, k(k2 − 1)) satisfies

• k = ±1: α(±1) = β(±1) = 0, i.e. ±1 mapping to the singular point;
• k = ∞: α(∞) = β(∞) = ∞, i.e. ∞ mapping to the infinity point.

Let t =
k + 1

k − 1
, the required parametrization is

(x, y) 7→ (φ(t), ψ(t)) =

(
4t

(t− 1)2
,
4t(t+ 1)

(t− 1)3

)
,

which satisfies

• t = 0: φ(0) = ψ(0) = 0, i.e. 0 mapping to the singular point;
• t = ∞: φ(∞) → 0, ψ(∞) → 0, i.e. ∞ mapping to the singular point;
• t = 1: φ(i) → ∞, ψ(1) → ∞, i.e. 1 mapping to the infinity point.

(ii) Let f : K× → Ens(K), t 7→

(φ(t), ψ(t)) t 6= 1

OE t = 1
. (i) tells us f is a bijection. If

P = f(t1) =

(
4t1

(t1 − 1)2
,
4t1(t1 + 1)

(t1 − 1)3

)
, Q = f(t2) =

(
4t2

(t2 − 1)2
,
4t2(t2 + 1)

(t2 − 1)3

)
,

we can calculate that P + Q = f(t1t2). If P = OE , the result is also correct, i.e.the group structure of
Ens(K) is correspond to multiplication group ofK×, therefore, Ens(K) ∼= K×.

Exercise 3.8 Let p be a prime number of the form u2 + 64 for some integer u (e.g. p =

73, 89, 113, 233, . . .). Choose the sign of u so that u ≡ 1 ( mod 4). Consider the two elliptic
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curves
E : y2 = x3 + ux2 − 16x

E′ : y2 = x3 − 2ux2 + px

Prove that E and E′ are isogenous, and that both curves have good reduction at all primes
different from p. Can you say anything about the Tamagawa numbers cp(E) and cp (E

′)?

Proof. (i) From Exercise 4.1, for the general curve y2 = x3 + ax2 + bx, the 2-isogeny with (0, 0) as the
kernel is y2 = x3 − 2ax2 + (a2 − 4b)x. Here a = u and b = −16, so the 2-isogeny is:

y2 = x3 − 2ux2 + (u2 + 64)x = x3 − 2ux2 + px

This is exactly E′. Therefore, E and E′ are isogenous.
(ii) Compute the discriminant:

∆E = 256p, ∆E′ = −256p2.

Thus, for any odd prime ` 6= p, we have ` ∤ ∆E and ` ∤ ∆E′ , so both E and E′ have good reductions at
` 6= p.

(iii) We know that for multiplicative reduction, the Tamagawa number depends on whether the
reduction is split or non-split. First, note that vp(∆E) = 1, vp(∆E′) = 2, soE,E′ are both multiplicative
reductions at p.

ForE: The modulus of the curve p is y2 = x3+ux2−16x. The singular point (s, y) satisfies y = 0

and ∂f/∂x ≡ 0 (mod p). Noting that s2 + us − 16 ≡ 0 (mod p), substituting ∂f/∂x yields us ≡ 32

(mod p). Let x = s+X , y = Y , and substituting into the equation yields Y 2 ≡ (3s+ u)X2 (mod p).
Therefore, the slope of the tangent is 3s+ u. Calculation:

(3s+ u)2 = 9s2 + 6us+ u2 = 9(−us+ 16) + 6us+ u2 = 48 + u2.

But u2 ≡ −64 (mod p), so (3s + u)2 ≡ −16 (mod p). And p = u2 + 64 ≡ 1 (mod 4), so 3s + u is
the square modulo p. This means the reduction type is splitting multiplication reduction, so cp(E) = 1.
Similarly, for E′, we can also prove that the tangent slope is −2u, (u/8)2 ≡ −1, and −1 is the fourth
power, so−2u is the square modulus p. Therefore, the reduction type is splitting multiplication reduction,
so cp(E′) = 1. In summary, cp(E) = cp(E

′) = 1.

Exercise 3.9 (i) Let E be an elliptic curve over an algebraically closed field K. Let φ : E → E

be a morphism of curves (not necessarily an isogeny). Show that if φ has no fixed points,
then φ (and hence also φn ) is a translation map.

(ii) Let C/Fq be a smooth projective curve of genus one. Show that C (Fq) 6= ∅.

Proof. (i) Define the mapping:

f : E → E, f(P ) = φ(P )− P.

22



Homework for Elliptic Curves Nicolas Keng

Since φ and group operations are morphisms, f is also a morphism. E is a projective curve, so f is either
a constant-valued mapping or a surjective mapping. If f is a surjective mapping, then there exists P ∈ E

such that f(P ) = O, i.e., φ(P ) = P , which contradicts the fact that φ has no fixed points. Therefore, f
must be a constant-valued mapping, that is, there exists Q ∈ E such that for any P ∈ E, we have:

φ(P ) = P +Q.

Thus, φ is a translation mapping. Furthermore, φn(P ) = P + nQ, also a translation mapping.
(ii) Note the Hasse–Weil bound:

||C(Fp)| − (q + 1)| ≤ 2
√
q ⇒ |C(Fp)| ≥ q + 1− 2

√
q.

For q ≥ 2, q + 1− 2
√
q > 0, so C(Fq) 6= ∅.

Exercise 3.10 Let E/Qp be as in Question 6, with minimal discriminant ∆E. Show that
vp (∆E) can take any positive integer value, but that if vp (∆E) ≥ 12 then either E or its
quadratic twist by p has multiplicative reduction.

Proof. Pending.

Exercise 3.11 (Some group theory needed for Question 12.) For A an abelian group and
n ≥ 2 an integer we define

q(A) =
# coker ([n] : A→ A)

# ker ([n] : A→ A)
.

(It is undefined if either group is infinite.) Show that if A ⊂ B is a subgroup of finite index,
and either q(A) or q(B) is defined, then they are both defined and q(A) = q(B).

Proof. First, the mapping is multiplication by n, so the kernel is the n-torsion point, and the cokernel is
A/nA.

q(A) =
# coker([n] : A→ A)

# ker([n] : A→ A)
=

|A/nA|
|A[n]|

.

Thus, the finite group C = B/A gives a short exact sequence

0 −→ A −→ B −→ C −→ 0,

Applying the mapping multiplication by n yields the commutative graph:

0 A B C 0

0 A B C 0

[n] [n] [n]

The snake lemma gives an exact sequence

0 → A[n] → B[n] → C[n] → A/nA→ B/nB → C/nC → 0,

23



Homework for Elliptic Curves Nicolas Keng

If Ifq(A) is defined, then |A/nA| and |A[n]| are finite. Since the exact sequence and C are finite, we
know that |B[n]| and |B/nB| are also finite, so q(B) is defined. Similarly, if q(B) is defined, then q(A)
is also defined. Furthermore, the order of the alternating product

|B[n]| · |A/nA| · |C/nC|
|A[n]| · |C[n]| · |B/nB|

= 1.

Since C is a finite Abelian group, we have: |C[n]| = |C/nC|, so

|A/nA|
|A[n]|

=
|B/nB|
|B[n]|

, i.e. q(A) = q(B).

Exercise 3.12 Let K be a finite extension of Qp. Let E/K be an elliptic curve and n ≥ 2 an
integer. Use Question 11 and the theory of formal groups to show that

(i) #(O×
K/(O×

K)
n
) = #µn(K) · #(OK/nOK),

(ii) #(E(K)/nE(K)) = #E(K)[n] · #(OK/nOK).

Proof. (i) Consider the group B = O×
K , so

q(B) =
|O×

K/(O×
K)n|

|µn(K)|
.

Let π be the uniformizer of K, and take r large enough so that the logarithmic map log : 1 + πrOK →
OK is a group isomorphism. This existence is due to the fact that K is a finite extension of Qp. Let
A = 1+ πrOK , then A is a finite exponential subgroup of B. Under the isomorphism log : A→ OK , a
[n] mapping on A corresponds to a multiplication by n on OK , so

q(A) =
|A/nA|
|A[n]|

= |(OK/nOK)|.

Since A is a finite exponential subgroup of B, from Exercise 3.11 we have q(B) = q(A), which is the
result required in (i).

(ii) Consider the group B = E(K), so

q(B) =
|E(K)/nE(K)|

|E(K)[n]|
.

Letπ LetA be a uniformizer ofK and let r be large enough so that the logarithmicmap log : Ê(πrOK) →
OK is a group isomorphism, which exists because of the formal group theory of elliptic curves. Let
A = Ê(πrOK), then A is a finite exponential subgroup of B. Under the isomorphism log : A→ OK , a
[n] mapping on A corresponds to a multiplication by n on OK , so

q(A) =
|A/nA|
|A[n]|

= |(OK/nOK)|.

Since A is a finite exponential subgroup of B, from Exercise 3.11 we have q(B) = q(A), which is the
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result required in (ii).
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4 Example Sheet 4

Exercise 4.1 Let E and E′ be the elliptic curves (defined over a number field K) given by

E : y2 = x3 + ax2 + bx E′ : y2 = x3 + a′x2 + b′x

with a′ = −2a, b′ = a2 − 4b. Let φ : E → E′ be the 2-isogeny given by φ (x, y) =(
y2/x2, y

(
x2 − b

)
/x2

)
.

(i) Show that T ′ = (0, 0) belongs to φ (E(K)) if and only if b′ ∈ (K×)
2.

(ii) Let P = (x, y) in E′(K) with P 6= O, T ′. Let t ∈ K̄ be a square root of x. Show that
φ−1(P ) = {(x1, y1) , (x2, y2)} where

x1 =
1

2
(x− a+ y/t) , y1 = x1t, x2 =

1

2
(x− a− y/t) , y2 = −x2t.

(iii) Define α : E′(K) → K×/(K×)
2 via α (0) = 1, α (T ′) = b′ and α (x, y) = x if x 6= 0.

Show that kerα = φ (E(K)).
(iv) Suppose the line y = λx+ ν meets the curve E′ in points P1, P2, P3 (counted with

multiplicity). Show that if Pi = (xi, yi) for i = 1, 2, 3 then x1x2x3 = ν2.
(v) Deduce that α is a group homomorphism. [There will be some special cases you

need to check.]

Proof. (i) Take Q = (x, y) ∈ E(K) s.t.

φ(Q) =

(
y2

x2
,
y(x2 − b)

x2

)
= T ′ = (0, 0),

Substituting into Q = (x, 0). Note that φ(0, 0) = O 6= T ′, so x 6= 0. Thus, x satisfies

0 = x3 + ax2 + bx = x(x2 + ax+ b) ⇒ x2 + ax+ b = 0,

This equation has a solution inK if and only if its discriminant a2−4b is a square inK. Since a2−4b = b′,
we have b′ ∈ (K×)2.

Conversely, if b′ ∈ (K×)2, then there exists x ∈ K such that x2 + ax+ b = 0. Taking Q = (x, 0),
then Q ∈ E(K) and:

φ(Q) =

(
0

x2
,
0 · (x2 − b)

x2

)
= (0, 0) = T ′.

(ii) Taking t ∈ K such that t2 = x. definition:

x1 =
1

2

(
x− a+

y

t

)
, y1 = x1t, x2 =

1

2

(
x− a− y

t

)
, y2 = −x2t,

we check (x1, y1) and (x2, y2) on E and φ(xi, yi) = P .
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First, calculate φ(x1, y1). Take
y21
x21

=
(x1t)

2

x21
= t2 = x, verify:

y1(x
2
1 − b)

x21
=
x1t(x

2
1 − b)

x21
= t · x

2
1 − b

x1
= y.

Calculate x21:

x21 =
(x− a)2

4
+
y2

4t2
+

(x− a)y

2t
=

(x− a)2

4
+
y2

4x
+

(x− a)y

2t
,

since P ∈ E′, substituting y2 = x3 + a′x2 + b′x = x3 − 2ax2 + (a2 − 4b)x, we obtain

x21 =
(x− a)2 − 2b

2
+

(x− a)y

2t
,

note that (x− a)2 − 4b =
y2

x
=
y2

t2
, we obtain

x21 − b =
y2

2t2
+

(x− a)y

2t
=

1

2t

(
y2

t
+ (x− a)y

)
=

y

2t

(y
t
+ (x− a)

)
,

therefore
t · x

2
1 − b

x1
= t · y

2t
·
y
t + (x− a)

x1
=
y

2
·
y
t + (x− a)

x1
= y,

This proves φ(x1, y1) = (x, y). Similarly, φ(x2, y2) = (x, y). Since φ is 2-isogeny, its kernel size is 2,
so for P 6= O, T ′, there are exactly two preimages, namely φ−1(P ) = {(x1, y1), (x2, y2)}.

(iii) If P ∈ φ(E(K)), then there exists Q ∈ E(K) such that φ(Q) = P . Obviously, when P = O

or P = T ′, α(P ) = 1.
If P = (x, y) and x 6= 0, then from (ii) we know that there exists t ∈ K such that t2 = x, such

that x1 =
1

2
(x − a + y/t) ∈ K. From this we have t = y/(2x1 − (x − a)) ∈ K, so x is square,

that is, α(P ) = 1. Conversely, if α(P ) = 1, P 6= O, T ′, take t ∈ K such that t2 = x, and let
x1 =

1

2
(x − a + y/t) ∈ K, then (x1, x1t) ∈ E(K) and φ(x1, x1t) = P , so P ∈ φ(E(K)). Therefore

kerα = φ(E(K)).
(iv) Let Pi = (xi, yi) be the intersection point and substitute into the E′ equation, we have

(λx+ ν)2 = x3 + a′x2 + b′x⇒ x3 + (a′ − λ2)x2 + (b′ − 2λν)x− ν2 = 0,

the roots of this cubic equation are x1, x2, x3. By Vieta’s Theorem,

x1x2x3 = ν2.

(v) Consider the group structure of E, i.e., let R = −(P +Q), then P,Q,R are collinear.
If the line does not pass through O, T ′, then the line is non-perpendicular and can be written as

y = λx+ ν. From (iv), if the x-coordinates of P,Q,R are all nonzero, then

xPxQxR = ν2 ⇒ α(P )α(Q)α(R) = α(P )α(Q)α(P +Q) = 1 ⇒ α(P +Q) = α(P )α(Q),
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note that the values   of α(P ) are all in the sense of
(
mod(K×)2

)
.

If the line passes through O, WLOG we may assume P = O, so α(P ) = 1, P +Q = Q,

α(P +Q) = α(Q) = 1 · α(Q) = α(P )α(Q).

If the line passes through T ′, WLOG we may assume P = T ′, then α(P ) = b′, ν = 0. Substituting
into the curve equation, it is clear that xQxR = b′, then

α(T ′)α(Q)α(R) = b′ · xQ · xR = b′ · b′ = b′2 ∈ (K×)2,

then
α(T ′)α(Q)α(R) = 1 ⇒ α(R) = α(T ′)α(Q) = α(T ′ +Q).

Thus α is a group homomorphism.

Exercise 4.2 Prove that 2 is not a congruent number.

Proof. Let’s recall the definition of a congruence number: a positive integer n is a congruence number
if and only if the elliptic curve E : y2 = x3 − n2x has infinitely many rational points. For n = 2,
consider the elliptic curve E : y2 = x3 − 4x, whose 2-isogeny curve is E′ : y2 = x3 + 16x. Define the
homomorphism:

αE : E(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

−4 x = 0

(
modQ×)2

)
.

αE′ : E′(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

16 x = 0

(
modQ×)2

)
.

We can use the Lutz–Nagell theorem to find that the torsion points of E are (0, 0), (±2, 0), O, and the
torsion points of E′ are (0, 0), O.

We calculate imαE :

1. O: αE(O) = 1;
2. (0, 0): αE(0, 0) = −4 ≡ −1

(
mod(Q×)2

)
;

3. (±2, 0): αE(±2, 0) = ±2.

Thus, | imαE | = 4. Then, we calculate imαE′ :

1. O: αE′(O) = 1;
2. (0, 0): αE′(0, 0) = 16 ≡ 1

(
mod(Q×)2

)
.

Thus, | imαE′ | = 1. Then, we note that 2-descent gives

2rankE(Q) =
| imαE | · | imαE′ |

4
=

4× 1

4
= 1,

So rankE(Q) = 0, therefore 2 is not a congruent number.
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Exercise 4.3 Compute the rank of E(Q) for each of the following elliptic curves E/Q. (i)
y2 = x3 + 6x2 − 2x (ii) y2 = x3 + 8x2 − 7x (iii) y2 = x3 − 3x2 + 10x (iv) y2 = x3 − 377x.

Proof. Consider the elliptic curve E : y2 = x3 + ax2 + bx, whose 2-isogeny curve is E′ : y2 =

x3 − 2ax2 + (a2 − 4b)x. Define the homomorphism:

αE : E(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

b x = 0

(
modQ×)2

)
.

αE′ : E′(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

a2 − 4b x = 0

(
modQ×)2

)
.

(i) E : y2 = x3 + 6x2 − 2x, then E′ : y2 = x3 − 12x2 + 44x, we calculate imαE :

1. O: αE(O) = 1;
2. (0, 0): αE(0, 0) = −2

(
mod(Q×)2

)
.

Thus, | imαE | = 2. Then, we calculate imαE′ :

1. O: αE′(O) = 1;
2. (0, 0): αE′(0, 0) = 44 ≡ 11

(
mod(Q×)2

)
.

Thus, | imαE′ | = 2. Then, we note that 2-descent gives

2rankE(Q) =
| imαE | · | imαE′ |

4
=

2× 2

4
= 1,

So rankE(Q) = 0.
(ii) E : y2 = x3 + 8x2 − 7x, then E′ : y2 = x3 − 16x2 + 92x, we calculate imαE :

1. O: αE(O) = 1;
2. (0, 0): αE(0, 0) = −7

(
mod(Q×)2

)
.

Thus, | imαE | = 2. Then, we calculate imαE′ similarly, | imαE′ | = 4. Then, we note that 2-descent
gives

2rankE(Q) =
| imαE | · | imαE′ |

4
=

2× 4

4
= 2,

So rankE(Q) = 1.
(iii)E : y2 = x3−3x2+10x, thenE′ : y2 = x3+6x2−31x, we calculate imαE : imαE ⊂ K(S, 2),

where S = {p|b} = {2, 5}, so the element in K(S, 2) is ±1,±2,±5,±10 and has size 8. We check
whether the square-free divisor b1 of b is in imαE , that is, the equation w2 = b1u

4 + au2v2 + b2v
4

has a solution on Q with b2 = 10/b1. The calculations show that there are solutions for all b1 > 0

(i.e., 1, 2, 5, 10), so imαE = {1, 2, 5, 10}, | imαE | =???. For E′, S′ = {p|b′} = {31}, the element
in K(S′, 2) is ±1,±31, with a size of 4. Similarly, checking b′1 in imαE′ reveals that all b′1 (i.e.,
1,−1, 31,−31) have solutions, so imαE′ = K(S′, 2), | imαE′ | = 4. Then, we note that 2-descent
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gives

2rankE(Q) =
| imαE | · | imαE′ |

4
=

4× 4

4
= 4,

So rankE(Q) = 2.
(iv) E : y2 = x3 − 377x, then E′ : y2 = x3 + 1508x, we calculate imαE : the element in

K(S, 2) is ±1,±13,±29,±377, of size 8, all b1 have solutions, so imαE = K(S, 2), of size 8. For E′,
S′ = {p|b′} = {2, 13, 29}, the element in K(S′, 2) is ±1,±2,±13,±26,±29,±58,±377,±754 and
has size 16. We can find that b′1 = 1, 13, 29, 377 has a solution, and b′1 = 2, 26, 58, 754 has no solution.
Therefore, imαE′ = {1, 13, 29, 377} has a size of 4. Then, we note that 2-descent gives

2rankE(Q) =
| imαE | · | imαE′ |

4
=

8× 4

4
= 8,

So rankE(Q) = 3.

Exercise 4.4 Find the rank of y2 = x3 − p2x for p a prime with p ≡ 3 (mod 8).

Proof. Consider the elliptic curve E : y2 = x3 − p2x, whose 2-isogeny curve is E′ : y2 = x3 + 4p2x.
Define the homomorphism:

αE : E(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

−p2 x = 0

(
modQ×)2

)
.

αE′ : E′(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

4p2 x = 0

(
modQ×)2

)
.

Obviously
∆E = 26 · p6, ∆E′ = −212 · p6,

we can use the Lutz–Nagell theorem to find that the torsion points of E are (0, 0), (±p, 0), O, and the
torsion points of E′ are (0, 0), O.

We calculate imαE :

1. O: αE(O) = 1;
2. (0, 0): αE(0, 0) = −p2 ≡ −1

(
mod(Q×)2

)
;

3. (±p, 0): αE(±p, 0) = ±p.

Thus, | imαE | = 4. Then, we calculate imαE′ :

1. O: αE′(O) = 1;
2. (0, 0): αE′(0, 0) = 4p2 ≡ 1

(
mod(Q×)2

)
.

Thus, | imαE′ | = 1. Then, we note that 2-descent gives

2rankE(Q) =
| imαE | · | imαE′ |

4
=

4× 1

4
= 1,

So rankE(Q) = 0.
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Exercise 4.5 Let ν(x) be the number of distinct prime factors of an integer x. Show that if
E/Q is an elliptic curve with Weierstrass equation y2 = x3 + ax2 + bx with a, b ∈ Z then

rankE(Q) ≤ ν (b) + ν
(
a2 − 4b

)
.

By considering real solubility, show that the inequality is strict. [This last part is easier if
a = 0, so assume that if you like.]

Proof. (i) Consider the elliptic curve E : y2 = x3 + ax2 + bx, whose 2-isogeny curve is E′ : y2 =

x3 − 2ax2 + (a2 − 4b)x. Define the homomorphism:

αE : E(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

b x = 0

(
modQ×)2

)
.

αE′ : E′(Q) → Q×/(Q×)2, P = (x, y) 7→

x x 6= 0

a2 − 4b x = 0

(
modQ×)2

)
.

Notice imαE ⊂ K(S, 2) where S is all primes dividing b, and imαE′ is similar. Then

| imαE | ≤ 2ν(b)+1, imαE′ ≤ 2ν(a
2−4b)+1

⇒ rankE(Q) = log2
| imαE | · | imαE′ |

4
≤ ν(b) + ν(a2 − 4b).

(ii) In Exercise 4.3(iv), ν(b)+ ν(a2−4b) = 2+3 = 5, but rank = 3 < 5. Therefore, the inequality
holds strictly.

Exercise 4.6 Let E be an elliptic curve over Q and let P ∈ E(Q). Show that P is a torsion
point if and only if ĥ(P ) = 0. [This gives another proof that the torsion subgroup is finite.]

Proof. We define the canonical height as:

ĥ(P ) = lim
n→∞

h(2nP )

4n
, h(a/b, y) = logmax{|a|, |b|}.

If P is a torsion point, then there exists a positive integer n such that nP = O,

0 = ĥ(O) = ĥ(nP ) = n2ĥ(P ) ⇒ ĥ(P ) = 0.

If ĥ(P ) = 0, then for any n ∈ Z+, ĥ(2nP ) = 4nĥ(P ) = 0, then

|h(2nP )− ĥ(2nP )| < ε ⇒ h(2nP ) < ε.

Clearly, {2nP |n ≥ 0} is a finite set, so there exist distinctm,n such that 2mP = 2nP , i.e., |2m−2n|P =

O, with P being a torsion point.

Exercise 4.7 Show that if φ : E → E′ and ψ : E′ → E′′ are isogenies defined over a number
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field K, then there is an exact sequence

E′(K) [ψ] → S(ϕ)(E/K) → S(ψϕ)(E/K) → S(ψ)
(
E′/K

)
.

Deduce from results proved in lectures that S(ϕ)(E/K) is finite.

Proof. We change the notation S(ϕ) to Selϕ. Consider the composition ψφ : E → E′′ is also an isogeny.
There is a canonical exact sequence of kernel groups

0 → E[φ]
ϕ′−→ E[ψφ]

ϕ−→ E′[ψ] → 0,

where φ′ is inclution, φ : E[ψφ] → E′[ψ] is surjective. Obviously we konw that H0(K,E[φ]) =

(E[φ])GalK = E(K)[φ], then this short exact sequence of GalK-modules induces a long exact sequence
in Galois cohomologyH i(K,−) := H i(GalK ,−):

0 E(K)[φ] E(K)[ψφ] E′(K)[ψ]

H1(K,E[φ]) H1(K,E[ψφ]) H1(K,E′[ψ]).

δ

α β

By definition of the Selmer group

Selϕ(E/K) :=
{
c ∈ H1(K,E[φ])

∣∣ resv(c) ∈ imκv, ∀v ∈ ΣK
}
⊂ H1(K,E[φ]),

notice that the restriction is a chain map of any complex, then Galois cohomology induces a commutative
diagram

E′(K)[ψ] H1(K,E[φ]) H1(K,E[ψφ]) H1(K,E′[ψ])

E′(Kv)[ψ] H1(Kv, E[φ]) H1(Kv, E[ψφ]) H1(Kv, E
′[ψ])

δ α

res

β

res res

thus we show the maps α, β, δ can be restrict to maps between Selmer groups.
From the cohomology sequence, αδ = 0, then im δ ⊂ kerα. Conversely, if c ∈ kerα∩Selϕ(E/K),

by exactness of the cohomology sequence, ∃Q ∈ E(K)[ψ], c = δ(Q) ∈ Selϕ(E/K), kerα ⊂ im δ.
Similarly, kerβ = imα. Then the sequence

E′(K)[ψ] → Selϕ(E/K) → Selψϕ(E/K) → Selψ(E′/K)

is exact.

Exercise 4.8 Let E be an elliptic curve over Q. Let K = Q(
√
d) where d is a square-free

integer. The quadratic twist Ed of E by d was defined in Question 7 on Example Sheet 1.
Show that there is a group homomorphism E(Q) × Ed(Q) → E(K) with finite kernel and
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cokernel. Deduce that
rankE(K) = rankE(Q) + rankEd(Q).

Proof. Pending.

Exercise 4.9 Let E be an elliptic curve over C. Let ω be an invariant differential on E.
Show that the map End(E) → C;φ 7→ φ∗ω/ω is an injective ring homomorphism. Use this
to check that the 2-isogenies φ and φ̂ (as defined in Question 1 and in lectures) are indeed
dual isogenies.

Proof. Pending.

Exercise 4.10 Let E/Q be the elliptic curve y2 = x (x+ 1) (x+ 4). (i) Compute the rank
and torsion subgroup of E(Q). [For the latter you may quote your answer from Question 2
on Example Sheet 3.] (ii) Show that if r, s, t ∈ Q× with r2, s2, 1, t2 in arithmetic progression
then (

−2s2, 2rst
)
∈ E(Q).

(iii) Deduce the result of Euler that there are no non-constant four term arithmetic progressions
of square numbers.

Proof. Pending.

Exercise 4.11 Let E be an elliptic curve defined over a number field K with E[2] ⊂ E(K), say
y2 = f(x) = (x− e1) (x− e2) (x− e3) with e1, e2, e3 ∈ K. (i) Define a group homomorphism
δ : E(K) → K×/(K×)

2 ×K×/(K×)
2 with kernel 2E(K). Using your answer to Question 1,

or otherwise, show that it is given by

(x, y) 7→


(x− e1, x− e2) if x 6= e1, e2

(f ′ (e1) , e1 − e2) if x = e1

(e2 − e1, f
′ (e2)) if x = e2

(ii) Let E/Q be the elliptic curve y2 = x3 − x. Compute δ(T ) for each T ∈ E(Q)[2]. Show,
by adapting the proof in the first lecture, that these elements generate the image of δ.
Deduce that rankE(Q) = 0.

Proof. Pending.
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